Forest soils harbor hyper-diverse microbial communities which fundamentally regulate carbon and nutrient cycling across the globe. Directly testing hypotheses on how microbiome diversity is linked to forest carbon storage has been difficult, due to a lack of paired data on microbiome diversity and in situ observations of forest carbon accumulation and storage. Here, we investigated the relationship between soil microbiomes and forest carbon across 238 forest inventory plots spanning 15 European countries.
View Article and Find Full Text PDFWood ash is alkaline and contains base-cations. Application of wood ash to forests therefore counteracts soil acidification and recycle nutrients removed during harvest. Wood ash application to soil leads to strong vertical gradients in physicochemical parameters.
View Article and Find Full Text PDFThe response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth-limiting nutrients and to assess changes in tree nutrition during the past two decades.
View Article and Find Full Text PDF