High-intensity training (HIT) has commonly been the most effective training method for improvement in maximal oxygen uptake (VO) and work economy, alongside a substantial volume of low-intensity training (LIT). The polarized training model combines both low- and high-intensity training into a specific training intensity distribution and has gained attention as a comprehensive approach. The objective of this review was to systematically search the literature in order to identify the effects of polarized training intensity distribution on VO, peak oxygen uptake (VO), and work economy among endurance athletes.
View Article and Find Full Text PDFThe developmental pathways of athletes with a physical disability into world-class parasport are much less researched and understood compared to able-bodied athletes' participation histories. The purpose of this study was to investigate the developmental pathways of para-athletes toward elite performance. Data from eight athletes with physical disabilities ranked among the top performers in Paralympics, World Championships, and/or European Championships were gathered.
View Article and Find Full Text PDFA comprehensive understanding of skill acquisition is important for different performance domains, and has practical implications for both sport sciences and public health. The study compared important constraints for expertise development in a physically demanding sport (cross-country skiing) versus a technically demanding sport (freeskiing). Eighteen world-class athletes reported the importance of different constraints for their developmental history subdivided into two age spans: (1) 7-15 years and (2) 16 years until present.
View Article and Find Full Text PDFPerformance of bimanual motor actions requires coordinated and integrated bilateral communication, but in some bimanual tasks, neural interactions and crosstalk might cause bilateral interference. The level of interference probably depends on the proportions of bilateral interneurons connecting homologous areas of the motor cortex in the two hemispheres. The neuromuscular system for proximal muscles has a higher number of bilateral interneurons connecting homologous areas of the motor cortex compared to distal muscles.
View Article and Find Full Text PDFBimanual performance depends on effective and modular bilateral communication between the two bodysides. Bilateral neural interactions between the bodysides could cause bimanual interference, and the neuromuscular system for proximal and distal muscles is differently organized, where proximal muscles have more bilateral interneurons at both cortical and spinal level compared to distal muscles. These differences might increase the potential for bimanual interference between proximal arm muscles, because of greater proportions of bilateral interneurons to proximal muscles.
View Article and Find Full Text PDFThe current experiment investigated generalizability of motor learning in proximal versus distal effectors in upper extremities. Twenty-eight participants were divided into three groups: training proximal effectors, training distal effectors, and no training control group (CG). Performance was tested pre- and post-training for specific learning and three learning transfer conditions: (1) bilateral learning transfer between homologous effectors, (2) lateral learning transfer between non-homologous effectors, and (3) bilateral learning transfer between non-homologous effectors.
View Article and Find Full Text PDF