Capsules are popular oral dosage forms because of their ease of production. They are widespread pharmaceutical products. Hard capsules are preferred dosage forms for new medicines undergoing clinical tests because they do not require expansive formulation development.
View Article and Find Full Text PDFFabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation.
View Article and Find Full Text PDFOne of the most vital aspects of the orthopedic implant field has been the development of multifunctional coatings that improve bone-implant contact while simultaneously preventing bacterial infection. The present study investigates the fabrication and characterization of multifunctional polysaccharides, including carboxymethyl cellulose (CMCn) and carboxymethyl chitosan nanofibers (CMCHn), as a novel implant coating on titania nanotube arrays (T). Field emission scanning electron microscopy (FESEM) images revealed a nanofibrous morphology with a narrow diameter for CMCn and CMCHn, similar to extracellular matrix nanostructures.
View Article and Find Full Text PDFIn this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80-110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8.
View Article and Find Full Text PDFDesigning multifunctional surfaces is key to develop advanced materials for orthopedic applications. In this study, we design a double-layer coating, assembled onto the completely regular titania nanotubes (cRTNT) array. Benefiting from the biological and topological characteristics of chitosan nanofibers (CH) and reduced graphene oxide (RGO) through a unique assembly, the designed material features promoted osteoblast cell viability, prolonged antibiotic release profile, as well as inhibited bacterial biofilm formation.
View Article and Find Full Text PDFDuring the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies.
View Article and Find Full Text PDFFabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds.
View Article and Find Full Text PDF