Publications by authors named "Morsy A El-Apasery"

1-(3-aryl)-3-(dimethylamino)prop-2-en-1-one (enaminones) derivatives and the diazonium salt of -chloroaniline were used to synthesize several novel disperse azo dyes with high yield and the use of an environmentally friendly approach. At 100 and 130 °C, we dyed polyester fabrics using the new synthesized disperse dyes. At various temperatures, the dyed fabrics' color intensity was assessed.

View Article and Find Full Text PDF

The enaminone compounds 3-Dimethylamino-1-arylpropenones produced in this review was synthesized by reacting -methylacetophenone and -nitroacetophenone with dimethylformamide dimethyl acetal. In this review article, we discuss how to create novel disperse colors by reacting enaminone derivatives and with phenyldiazonium salt. The highly productive procedure of creating new disperse dyes was followed by the process of dyeing polyester fabrics at temperatures between 70 and 130 °C.

View Article and Find Full Text PDF

Advanced and eco-friendly construction materials are being developed to reduce pollution and improve wastewater treatment efficiency. One such material is a photocatalytic nanocomposite that uses industrial wastes and natural substances to eliminate pollution. A recent study explored using an inorganic polymer composite (FM) made from a mixture of 70% fly ash and 30% metakaolin, with sodium hydroxide and sodium silicate as an alkali activator.

View Article and Find Full Text PDF

3-(dimethylamino)-1-phenylprop-2-en-1-ones were obtained with good yields by reacting dimethylformamide dimethylacetal with different methyl ketones. 3-oxo-3-phenyl-2-(2-phenylhydrazono)propanals disperse dyes were obtained via reacting of 3-(dimethylamino)-1-phenylprop-2-en-1-ones with phenyldiazonium chloride. The novel dyes were used in dyeing polyester fabrics through two different dyeing methods at temperatures of 100 and 130 °C.

View Article and Find Full Text PDF

Untreated wastewater pollution causes environmental degradation, health issues, and ecosystem disruption. Geopolymers offer sustainable, eco-friendly alternatives to traditional cement-based materials for wastewater solidification and removal. In this study, we investigate how wastewater containing organic and inorganic pollutants can be removed using geopolymer mixes based on metakaolin incorporation with cement kiln dust as an eco-friendly material.

View Article and Find Full Text PDF

In this review, we present preparation methods for a series of new disperse dyes that we have synthesized over the past thirteen years in an environmentally safe and economical way using innovative methods, conventional methods, or using microwave technology as a safe and uniform method of heating. The results showed that in many of the synthetic reactions we carried out, the use of the microwave strategy provides us with the product in minutes and with higher productivity compared to the conventional methods. This strategy provides or may dispense with the use of harmful organic solvents.

View Article and Find Full Text PDF

Water is a resource that is essential to almost all phases of industrial and manufacturing operations globally. It is important to handle the wastewater generated professionally. The textile industry is one of the major global polluters, with textile producers responsible for one-fifth of all industrial water pollution worldwide.

View Article and Find Full Text PDF

Original work showed the composition of the dyes and the antimicrobial/UV protective properties of a series of dyes obtained in our laboratories over the past twelve years in an easy way using microwave technology and their comparisons with conventional methods. The results we obtained clearly indicated that by using the microwave strategy, we were able to synthesize the new disperse dyes in minutes and with a much higher productivity when compared to the traditional methods, which took a much longer time, sometimes up to hours. We also introduced ultrasonic technology in dyeing polyester fabrics at 80 °C for an environmentally friendly approach, which was an alternative to traditional dyeing methods at 100 °C; we obtained a much higher color depth than traditional dyeing methods reaching 102.

View Article and Find Full Text PDF

Organic reactions utilizing the microwave strategy have become able to conduct in shorter times, with higher yields, and are compatible with green chemistry protocols. In recent years, microwave technologies as an effective agent in organic synthesis have been successful utilized in textile industries and for the synthesis of dyes, especially disperse dyes. Herein, we present our contributions over the past decade through the use of microwave technology not only in the synthesis of new biologically active organic compounds and disperse dyes, but also the use of this effective, environmentally friendly technology in dyeing polyester fabrics as an alternative to conventional heating methods.

View Article and Find Full Text PDF

This review summarizes our contributions during last decade on the synthesis of arylazopyridones that may be used as disperse dyes for hydrophobic fabrics utilizing an environmentally benign high temperature dyeing method. The review also discusses the advantages of select disperse dyes based on pyridone moieties as antioxidant, antimicrobial and anticancer agents.

View Article and Find Full Text PDF

Polyester fabrics were dyed with prepared disperse dyes using the high temperature dyeing method. The dye exhaustion of the dye baths were compared to the low-temperature dyeing method in an attempt to study the proportion of the dye effluent solution that affects the environment. The dye uptake of the high temperature dyeing method (HT) of polyester fabric was compared with low temperature dyeing, hence (HT) increased the color strength of the investigated dyes by 309 and 265%.

View Article and Find Full Text PDF

Both non eco- and eco-friendly carriers were utilized for accelerating the dyeing rate of polyethylene terephthalate fabrics (PET) dyed with disperse dyes at 100 °C. Fastness properties of the dyed fabrics showed good and excellent results. Finally, the prepared disperse dyes 1 and 2 showed potent anti-tumor cytotoxic activity in vitro using MCF-7 cells (human breast cancer cell line), HepG-2 cells (human Hepatocellular carcinoma), HCT-116 (colon carcinoma), A-549 cells (Lung carcinoma cell line), and anti-oxidant activities.

View Article and Find Full Text PDF

The goal of this study was to utilize carrier for accelerating the rate of dyeing not only to enhance dyeing of polyester fabrics dyed with disperse dyes 3a,b, but also to save energy. Both the color strength expressed as dye uptake and the fastness properties of the dyed fabrics were evaluated.

View Article and Find Full Text PDF

Dyeing of polyester fabrics with thienobenzochromene disperse dyes under conventional and microwave heating conditions was studied in order to determine whether microwave heating could be used to enhance the dyeability of polyester fabrics. Fastness properties of the dyed samples were measured. All samples dyed with or without microwave heating displayed excellent washing and perspiration fastness.

View Article and Find Full Text PDF

A series of azo disperse dyes based on aminothienochromene were synthesized. The fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed excellent washing and perspiration fastness and moderate light fastness.

View Article and Find Full Text PDF

A series of monoazo disperse dyes derived from arylazothienopyridazines were synthesized. Fastness properties of dyed polyester samples were measured. Most of the dyed fabrics tested displayed excellent washing and perspiration fastness and moderate light fastness.

View Article and Find Full Text PDF

A series of new monoazo disperse dyes containing pyrazolopyrimidine moieties was synthesized by coupling malononitrile or 3-aminocrotononitrile with 4-hydroxy- benzenediazonium chloride. Treatment of the resulting products with hydrazine hydrate yields the corresponding 4-arylazoaminopyrazoles, which then react with either 2,4-pentanedione and enaminonitriles or aryl-substituted enaminoketones to give the target pyrazolopyrimidine monoazo disperse dyes. Structural assignments of the dyes were made using both NMR spectroscopic and X-ray crystallographic methods.

View Article and Find Full Text PDF

A as textile dyes and the fastness properties of the dyed samples were measured. Most of the dyed fabrics tested displayed very good washing and perspiration fastness and series of 2-hydroxy- and 2-amino-6-substituted-5-arylazonicotinate monoazo compounds 7a-e and 9a-c were prepared via condensation of 3-oxo-3-substituted-2-arylhydrazonals 2a-e with active methylene nitriles 3a-d using microwave irradiation as an energy source. These substances were then tested moderate light fastness.

View Article and Find Full Text PDF

A series of novel azo-disperse dyes containing alkylhydrazonopyridinone structures were synthesized. 4-Methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydropyridine-3-carbonitrile (8) is synthesized by one-pot synthesis using ethyl cyanoacetate, propylamine, and ethyl acetoacetate. Compound 8 is then coupled with aromatic and heteroaromatic diazonium salts to afford the corresponding aryl- and heteroaryl-4-methyl-2,6-dioxo-1-propyl-1,2,5,6-tetrahydropyridine-3-carbonitriles 12a,b and 13a-c.

View Article and Find Full Text PDF

3-Oxo-3-phenyl-2-(p-tolylhydrazono)propanal (1a) undergoes condensation with ethyl cyanoacetate in acetic acid in the presence of ammonium acetate to yield either 2-hydroxy-6-phenyl-5-p-tolylazonicotinic acid ethyl ester (6a) or 2-amino-6-phenyl-5-ptolyl-azonicotinic acid ethyl ester (8), depending on the reaction conditions. Similarly, other 3-oxo-3-aryl-2-arylhydrazonopropanals 1a,b condense with active methylene nitriles 2c,d to yield arylazonicotinates 6b,c. In contrast, 2-[(4-nitrophenyl)-hydrazono]-3-oxo-3-phenyl-propanal (1c) reacts with ethyl cyanoacetate to yield ethyl 6-(4-nitrophenyl)-2-oxo-2,6-dihydropyrido[3,2–c]cinnoline-3-carboxylate (11), via a novel 6π-electrocyclization pathway.

View Article and Find Full Text PDF

A series of 4-hydroxyphenylazopyrazolopyrimidine disperse dyes were prepared via one-pot reactions of p-hydroxyphenylhydrazone, hydrazine hydrate, and acetylacetone or enaminones using microwave irradiation as an energy source. Structural assignments of the dyes were confirmed by X-ray crystallographic structure determination. Instead of discharging the dyebath after each dyeing cycle, the residual dyebath was spectrophotometrically analyzed and then pH readjusted for a repeat dyeing with longer time.

View Article and Find Full Text PDF

A series of novel monoazo-disperse dyes containing pyrazolo[1,5-a]pyrimidine structures were synthesized starting with the coupling reaction between ethyl cyanoacetate and 4-hydroxybenzenediazonium chloride, followed by treatment of the resulting hydrazone product with hydrazine hydrate. The pyrazolohydrazone 6 is then treated with either 2,4-pentandione and enaminonitrile or aryl-substituted enaminoketones to give the target pyrazolo[1,5-a]pyrimidine dyes 7 and 15a-d. Structural assignments to the dyes were made using NMR spectroscopic methods.

View Article and Find Full Text PDF

Condensation of phthalimidoacetone (1) with DMFDMA (N,N-Dimethylformamide dimethyl acetal) has afforded enaminone 2. Refluxing 2 with equimolecular amounts of benzaldehyde and urea in acetic acid afforded a mixture of tetrahydropyrimidine 5 and the dihydropyridine 6. Compound 2 undergoes self-condensation on heating in acetic acid or under microwave irradiation in presence of acidic zeolite to give 1,3,5-triacylbenzene 9.

View Article and Find Full Text PDF

Phthalimide reacted with phenacyl bromide under microwave irradiation to yield phenacyl isoindolidene-1,3-dione (3b), while 3a reacted with phenylhydrazine to yield the phenylhydrazone 4 that was readily converted into indoylphthalimide 8. Similarly N-benzotriazolylacetone (6a) reacted with phenyl hydrazine to yield the phenylhydrazone 7a that was converted into indoylbenzotriazole 9. Treatment of 8 with hydrazine hydrate afforded a mixture of phthalhydrazide 10 and 3-amino-2-methylindole (11).

View Article and Find Full Text PDF