IgG4-related disease (IgG4-RD) is an autoimmune syndrome that is characterized by elevated levels of serum IgG4 and infiltration of various tissue types by IgG4 immunoreactive plasma cells. The IgG4-RD can result in systemic disease and the formation of inflammatory mass lesions, frequently addressed as pseudotumors. While IgG4-RD can manifest in various organs, liver involvement is rare, and because it is an immune-mediated inflammatory process, it is uncommon in patients who are immunocompromised.
View Article and Find Full Text PDFCombining optoacoustic (OA) imaging with ultrasound (US) enables visualisation of functional blood vasculature in breast lesions by OA to be overlaid with the morphological information of US. Here, we develop a simple OA feature set to differentiate benign and malignant breast lesions. 94 female patients with benign, indeterminate or suspicious lesions were recruited and underwent OA-US.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2021
The highly complementary information provided by multispectral optoacoustics and pulse-echo ultrasound have recently prompted development of hybrid imaging instruments bringing together the unique contrast advantages of both modalities. In the hybrid optoacoustic ultrasound (OPUS) combination, images retrieved by one modality may further be used to improve the reconstruction accuracy of the other. In this regard, image segmentation plays a major role as it can aid improving the image quality and quantification abilities by facilitating modeling of light and sound propagation through the imaged tissues and surrounding coupling medium.
View Article and Find Full Text PDFThe Hessian-based Frangi vesselness filter is commonly used to enhance vasculature in optoacoustic (photoacoustic) images, but its accuracy and limitations have never been rigorously assessed. Here we validate the ability of the filter to enhance vessel-like structures in phantoms, and we introduce an experimental approach that uses measurements before and after the administration of gold nanorods (AuNRs) to examine filter performance . We evaluate the influence of contrast, filter scales, angular tomographic coverage, out-of-plane signals and light fluence on image quality, and gain insight into the performance of the filter.
View Article and Find Full Text PDFMultiSpectral Optoacoustic Tomography (MSOT) is an emerging imaging technology that allows for data acquisition at high spatial and temporal resolution. These imaging characteristics are advantageous for Dynamic Contrast Enhanced (DCE) imaging that can assess the combination of vascular flow and permeability. However, the quantitative analysis of DCE MSOT data has not been possible due to complications caused by wavelength-dependent light attenuation and variability in light fluence at different anatomical locations.
View Article and Find Full Text PDFPurpose: Optoacoustic imaging with ultrasound (OPUS) can assess in-vivo perfusion/oxygenation through surrogate measures of oxy, deoxy and total hemoglobin content in tissues. The primary aim of our study was to evaluate the ability of OPUS to detect physiological changes in the breast during the menstrual cycle and to determine qualitative/quantitative metrics of normal parenchymal tissue in pre-/post-menopausal women. The secondary aim was to assess the technique's repeatability.
View Article and Find Full Text PDFBiotech Histochem
March 2017
We introduce a new approach to detect individual microparticles that contain NIR fluorescent dye by multispectral optoacoustic tomography in the context of the hemoglobin-rich environment within murine liver. We encapsulated a near infrared (NIR) fluorescent dye within polystyrene microspheres, then injected them into the ileocolic vein, which drains to the liver. NIR absorption was determined using multispectral optoacoustic tomography.
View Article and Find Full Text PDFOptoacoustic tomography is a fast developing imaging modality, combining the high contrast available from optical excitation of tissue with the high resolution and penetration depth of ultrasound detection. Light is subject to both absorption and scattering when traveling through tissue; adequate knowledge of tissue optical properties and hence the spatial fluence distribution is required to create an optoacoustic image that is directly proportional to chromophore concentrations at all depths. Using data from a commercial multispectral optoacoustic tomography (MSOT) system, we implemented an iterative optimization for fluence correction based on a finite-element implementation of the delta-Eddington approximation to the Radiative Transfer Equation (RTE).
View Article and Find Full Text PDFSentinel lymph node (SLN) excision is included in various cancer guidelines to identify microscopic metastatic disease. Although effective, SLN excision is an invasive procedure requiring radioactive tracing. Novel imaging approaches assessing SLN metastatic status could improve or replace conventional lymph node excision protocols.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2015
Implementation of hybrid imaging using optoacoustic tomography (OAT) and ultrasound (US) brings together the important advantages and complementary features of both methods. However, the fundamentally different physical contrast mechanisms of the two modalities may impose significant difficulties in the optimal tomographic data acquisition and image formation strategies. We investigate the applicability of the commonly applied imaging geometries for acquisition and reconstruction of hybrid optoacoustic tomography and pulse-echo ultrasound (OPUS) images.
View Article and Find Full Text PDFA common side effect of medication is gastrointestinal intolerance. Symptoms can include reduced appetite, diarrhea, constipation, GI inflammation, nausea and vomiting. Such effects often have a dramatic impact on compliance with a treatment regimen.
View Article and Find Full Text PDFPurpose: A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies.
Procedures: Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors.
Detection of intrinsic or extrinsically administered chromophores and photo-absorbing nanoparticles has been achieved by multi-spectral optoacoustic tomography (MSOT). The detection sensitivity of MSOT depends not only on the signal to noise ratio considerations, as in conventional optoacoustic (photoacoustic) tomography implementations, but also on the ability to resolve the molecular targets of interest from the absorbing tissue background by means of spectral unmixing or sub-pixel detection methods. However, it is not known which unmixing methods are optimally suited for the characteristics of multispectral optoacoustic images.
View Article and Find Full Text PDFWe reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate.
View Article and Find Full Text PDFBrain research depends strongly on imaging for assessing function and disease in vivo. We examine herein multispectral opto-acoustic tomography (MSOT), a novel technology for high-resolution molecular imaging deep inside tissues. MSOT illuminates tissue with light pulses at multiple wavelengths and detects the acoustic waves generated by the thermoelastic expansion of the environment surrounding absorbing molecules.
View Article and Find Full Text PDFThe characterization of pharmacokinetic and biodistribution profiles is an essential step in the development process of new candidate drugs or imaging agents. Simultaneously, the assessment of organ function related to the uptake and clearance of drugs is of great importance. To this end, we demonstrate an imaging platform capable of high-rate characterization of the dynamics of fluorescent agents in multiple organs using multispectral optoacoustic tomography (MSOT).
View Article and Find Full Text PDF