Purpose: Much of the heredity of melanoma remains unexplained. We sought predisposing germline copy-number variants using a rare disease approach.
Methods: Whole-genome copy-number findings in patients with melanoma predisposition syndrome congenital melanocytic nevus were extrapolated to a sporadic melanoma cohort.
DiGeorge syndrome (DGS) is a primary immunodeficiency characterized by various degrees of T-cell deficiency. In partial DGS (pDGS), other risk factors could predispose to recurrent infections, autoimmunity, and allergy. The aim of this study was to assess the effect of different factors in the development of infections, autoimmunity, and/or allergy in patients with pDGS.
View Article and Find Full Text PDFThis study investigated the genetic basis of an unusual autosomal dominant phenotype characterized by familial absent uvula, with a short posterior border of the soft palate, abnormal tonsillar pillars, and velopharyngeal insufficiency. Cytogenetic analysis and single-nucleotide polymorphism-based linkage analysis were investigated in a 4-generation family with 8 affected individuals. Whole exome sequencing data were overlaid, and segregation analysis identified a single missense variant, p.
View Article and Find Full Text PDFObjective: Copy number variations (CNVs) represent a significant genetic risk for several neurodevelopmental disorders including epilepsy. As knowledge increases, reanalysis of existing data is essential. Reliable estimates of the contribution of CNVs to epilepsies from sizeable populations are not available.
View Article and Find Full Text PDFAm J Med Genet B Neuropsychiatr Genet
June 2018
Recurrent deletions and duplications at the 2q13 locus have been associated with developmental delay (DD) and dysmorphisms. We aimed to undertake detailed clinical characterization of individuals with 2q13 copy number variations (CNVs), with a focus on behavioral and psychiatric phenotypes. Participants were recruited via the Unique chromosomal disorder support group, U.
View Article and Find Full Text PDFChromosomal abnormalities are often identified in people with neurodevelopmental disorders including intellectual disability, autism, and epilepsy. Ring chromosomes, which usually involve gene copy number loss, are formed by fusion of subtelomeric or telomeric chromosomal regions. Some ring chromosomes, including ring 14, 17, and 20, are strongly associated with seizure disorders.
View Article and Find Full Text PDFInterstitial deletions of 4q are rarely reported, vary in size, and have limited genotype-phenotype correlations. Here, genome-wide array CGH analysis identified a 21.6 Mb region of copy number loss at 4q12-q21.
View Article and Find Full Text PDFIt is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain-containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality.
View Article and Find Full Text PDFBackground: We describe molecular diagnosis in a complex consanguineous family: four offspring presented with combinations of three distinctive phenotypes; non-syndromic hearing loss (NSHL), an unusual skeletal phenotype comprising multiple fractures, cranial abnormalities and diaphyseal expansion, and significant developmental delay with microcephaly. We performed Chromosomal Microarray Analysis on the offspring with either the skeletal or developmental delay phenotypes, and linkage analysis and whole exome sequencing (WES) on all four children, parents and maternal aunt.
Results: Chromosomal microarray and FISH analysis identified a de novo unbalanced translocation as a cause of the microcephaly and severe developmental delay.
Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings.
View Article and Find Full Text PDFChromosomal copy-number variations (CNVs) are a class of genetic variants highly implicated in the aetiology of neurodevelopmental disorders, including intellectual disabilities (ID), schizophrenia and autism spectrum disorders (ASD). Yet the majority of adults with idiopathic ID presenting to psychiatric services have not been tested for CNVs. We undertook genome-wide chromosomal microarray analysis (CMA) of 202 adults with idiopathic ID recruited from community and in-patient ID psychiatry services across England.
View Article and Find Full Text PDFBackground: We sought to investigate the diagnostic yield and mutation spectrum in previously reported genes for early-onset epilepsy and disorders of severe developmental delay.
Methods: In 400 patients with these disorders with no known underlying aetiology and no major structural brain anomaly, we analysed 46 genes using a combination of targeted sequencing on an Illumina MiSeq platform and targeted, exon-level microarray copy number analysis.
Results: We identified causative mutations in 71/400 patients (18%).
Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families.
View Article and Find Full Text PDFDe novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome.
View Article and Find Full Text PDFBackground: The BTB-KELCH protein Gigaxonin plays key roles in sustaining neuron survival and cytoskeleton architecture. Indeed, recessive mutations in the Gigaxonin-encoding gene cause Giant Axonal Neuropathy (GAN), a severe neurodegenerative disorder characterized by a wide disorganization of the Intermediate Filament network. Growing evidences suggest that GAN is a continuum with the peripheral neuropathy Charcot-Marie-Tooth diseases type 2 (CMT2).
View Article and Find Full Text PDFThe advantage of microarray (array) over conventional karyotype for the diagnosis of fetal pathogenic chromosomal anomalies has prompted the use of microarrays in prenatal diagnostics. In this review we compare the performance of different array platforms (BAC, oligonucleotide CGH, SNP) and designs (targeted, whole genome, whole genome, and targeted, custom) and discuss their advantages and disadvantages in relation to prenatal testing. We also discuss the factors to consider when implementing a microarray testing service for the diagnosis of fetal chromosomal aberrations.
View Article and Find Full Text PDFX-linked intellectual disability type Nascimento (MIM #300860), caused by mutations in UBE2A (MIM *312180), is characterized by craniofacial dysmorphism (synophrys, prominent supraorbital ridges, deep-set, almond-shaped eyes, depressed nasal bridge, prominent columella, hypoplastic alae nasi, and macrostomia), skin anomalies (hirsutism, myxedematous appearance, onychodystrophy), micropenis, moderate to severe intellectual disability (ID), motor delay, impaired/absent speech, and seizures. Hitherto only five familial point mutations and four different deletions including UBE2A have been reported in the literature.We present eight additional individuals from five families with UBE2A associated ID - three males from a consanguineous family, in whom we identified a small deletion of only 7.
View Article and Find Full Text PDFCongenital melanocytic nevi (CMN) can be associated with neurological abnormalities and an increased risk of melanoma. Mutations in NRAS, BRAF, and Tp53 have been described in individual CMN samples; however, their role in the pathogenesis of multiple CMN within the same subject and development of associated features has not been clear. We hypothesized that a single postzygotic mutation in NRAS could be responsible for multiple CMN in the same individual, as well as for melanocytic and nonmelanocytic central nervous system (CNS) lesions.
View Article and Find Full Text PDFSotos syndrome is characterized by overgrowth, a typical facial appearance, and learning difficulties. It is caused by heterozygous mutations, including deletions, of NSD1 located at chromosome 5q35. Here we report two unrelated cases of Sotos syndrome associated with nephrocalcinosis.
View Article and Find Full Text PDF