Aim: The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model.
View Article and Find Full Text PDFThe presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined.
View Article and Find Full Text PDFThe ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation.
View Article and Find Full Text PDFBio-artificial liver support systems have been utilized as bridging devices to support acute and chronic liver injury. However, prolonged function of adult hepatocytes has not been achieved due to compromised proliferation and long-term survival of adult cells in vitro. As an alternative cell source, we investigated the potential of human fetal hepatocytes (hFH) in a four-compartment hollow fiber-based three-dimensional (3D) perfusion culture system.
View Article and Find Full Text PDFScattered in the amniotic epithelium of the human term placenta are pluripotent stem cell marker-positive cells. Unlike other parts of the placenta, amniotic epithelial (AE) cells are derived from pluripotent epiblasts. It is hypothesized that most epiblast-derived fetal AE cells are positive for stem cell markers at the beginning of pregnancy and that the stem cell marker-positive cells scattered through the term amnion are remaining, epiblast-like stem cells.
View Article and Find Full Text PDF