Publications by authors named "Morphy C Dumlao"

Fungal infection of grape berries () by frequently coincides with harvest, impacting both the yield and quality of grape and wine products. A rapid and non-destructive method for identifying infection in grapes at an early stage prior to harvest is critical to manage loss. In this study, zeolitic imidazolate framework-8 (ZIF-8) crystal was applied as an absorbent material for volatile extraction from infected and healthy grapes in a vineyard, followed by thermal desorption gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Infection of grape berries (Vitis vinifera) by the fungus Botrytis cinerea (grey mould) frequently occurs in vineyards, resulting in off-flavours and other odours in wine and potential yield losses. In this study, volatile profiles of four naturally infected grape cultivars, and laboratory-infected grapes were analysed to identify potential markers for B. cinerea infection.

View Article and Find Full Text PDF

Dielectric barrier discharge ionization (DBDI) is an emerging technique for ionizing volatile molecules directly from complex mixtures for sensitive detection by mass spectrometry (MS). In conventional DBDI, a high frequency and high voltage waveform with pulse widths of ∼50 μs (and ∼50 μs between pulses) is applied across a dielectric barrier and a gas to generate "low temperature plasma." Although such a source has the advantages of being compact, economical, robust, and sensitive, background ions from the ambient environment can be formed in high abundances, which limits performance.

View Article and Find Full Text PDF

Active capillary dielectric barrier discharge ionization (DBDI) is emerging as a compact, low-cost, and robust method to form intact ions of small molecules for detection in near real time by portable mass spectrometers. Here, we demonstrate that by using a 10 kHz, ~2.5 kV high-voltage square-wave alternating current plasma, active capillary DBDI can consume less than 1 μW of power.

View Article and Find Full Text PDF

Solid-phase microextraction (SPME) is directly integrated with low temperature plasma ionisation mass spectrometry to rapidly detect organophosphate chemical warfare agent simulants and their hydrolysis products in chemical mixtures, including urine. In this sampling and ionization method, the fibre serves: (i) to extract molecules from their native environment, and (ii) as the ionization electrode that is used to desorb and ionize molecules directly from the SPME surface. By use of a custom fabricated SPME fibre consisting of a stainless steel needle coated with a Linde Type A (LTA) zeolitic microporous material and low temperature plasma mass spectrometry, protonated dimethyl methylphosphonate (DMMP), diethyl ethylphosphonate (DEEP) and pinacolyl methylphosphonic acid (PinMPA) can be detected at less than 100 ppb directly in water and urine.

View Article and Find Full Text PDF

Methamphetamine hydrochloride is one of the most widely used illicit drugs in the Philippines. In this study, we describe the application of cluster analysis of trace impurities in the profiling of the seized methamphetamine drug samples. Thirty milligrams of a homogenized drug sample were dissolved in 1 mL of pH 10.

View Article and Find Full Text PDF