Publications by authors named "Moriyah Zik"

The plant protein ARGONAUTE1 (AGO1) functions in multiple RNA-silencing pathways, including those of microRNAs, key regulators of growth and development. Genetic analysis of ago1 mutants with informative defects has provided valuable insights into AGO1's biological functions. Tomato encodes two AGO1 homologs (SlAGO1s), but mutants have not been described to date.

View Article and Find Full Text PDF

The GDSL-lipase gene family is a very large subfamily within the supergene family of SGNH esterases, defined by the distinct GDSL amino acid motif and several highly conserved domains. Plants retain a large number of GDSL-lipases indicating that they have acquired important functions. Yet, in planta functions have been demonstrated for only a few GDSL-lipases from diverse species.

View Article and Find Full Text PDF

Background: The Arabidopsis FILAMENTOUS FLOWER (FIL) gene encodes a YABBY (YAB) family putative transcription factor that has been implicated in specifying abaxial cell identities and thus regulating organ polarity of lateral organs. In contrast to double mutants of fil and other YAB genes, fil single mutants display mainly floral and inflorescence morphological defects that do not reflect merely a loss of abaxial identity. Recently, FIL and other YABs have been shown to regulate meristem organization in a non-cell-autonomous manner.

View Article and Find Full Text PDF

Successful male reproductive function in plants is dependent on the correct development and functioning of stamens and pollen. AGP6 and AGP11 are two homologous Arabidopsis genes encoding cell wall-associated arabinogalactan glycoproteins (AGPs). Both genes were found to be specifically expressed in stamens, pollen grains and pollen tubes, suggesting that these genes may play a role in male organ development and function.

View Article and Find Full Text PDF

Bacterial glutamate decarboxylase (GAD) is a homohexameric enzyme of about 330 kDa. Plant GAD differs from the bacterial enzyme in having a C-terminal extension of 33 amino acids within which resides a calmodulin (CaM)-binding domain. In order to assess the role of the C-terminal extension in the formation of GAD complexes and in activation by Ca2+/CaM, we examined complexes formed with the purified full-length recombinant petunia GAD expressed in E.

View Article and Find Full Text PDF

In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e.

View Article and Find Full Text PDF

Flowering is one of the most intensively studied processes in plant development. Despite the wide diversity in floral forms, flowers have a simple stereotypical architecture. Flowers develop from florally determined meristems.

View Article and Find Full Text PDF

Identifying the genes regulated by the floral homeotic genes APETALA3 (AP3) and PISTILLATA (PI) is crucial for understanding the molecular mechanisms that lead to petal and stamen formation. We have used microarray analysis to conduct a broad survey of genes whose expression is affected by AP3 and PI activity. DNA microarrays consisting of 9216 Arabidopsis ESTs were screened with probes corresponding to mRNAs from different mutant and transgenic lines that misexpress AP3 and/or PI.

View Article and Find Full Text PDF