Background: We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have proposed DUX4c involvement in muscle regeneration. Here, we provide further evidence for such a role in skeletal muscles from patients affected with facioscapulohumeral muscular dystrophy (FSHD).
View Article and Find Full Text PDFMitochondria play central roles in maintaining cellular metabolic homeostasis, cell survival and cell death, and generate most of the cell's energy. Mitochondria maintain their homeostasis by dynamic (fission and fusion) and quality control mechanisms, including mitophagy, the removal of damaged mitochondria that is mediated mainly by the Pink1/Parkin pathway. Pink1 is a serine/threonine kinase which regulates mitochondrial function, hitherto many molecular mechanisms underlying Pink1 activity in mitochondrial homeostasis and cell fate remain unknown.
View Article and Find Full Text PDFAtomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell.
View Article and Find Full Text PDFDevelopment of new reagents for protein cross-linking is constantly ongoing. The chemical formulas for the linker adducts formed by these reagents are usually deduced from expert knowledge and then validated by mass spectrometry. Clearly, it would be more rigorous to infer the chemical compositions of the adducts directly from the data without any prior assumptions on their chemistries.
View Article and Find Full Text PDFWhole-cell cross-linking coupled to mass spectrometry is one of the few tools that can probe protein-protein interactions in intact cells. A very attractive reagent for this purpose is formaldehyde, a small molecule which is known to rapidly penetrate into all cellular compartments and to preserve the protein structure. In light of these benefits, it is surprising that identification of formaldehyde cross-links by mass spectrometry has so far been unsuccessful.
View Article and Find Full Text PDFCentromeric nucleosomes are at the interface of the chromosome and the kinetochore that connects to spindle microtubules in mitosis. The core centromeric nucleosome complex (CCNC) harbors the histone H3 variant, CENP-A, and its binding proteins, CENP-C (through its central domain; CD) and CENP-N (through its N-terminal domain; NT). CENP-C can engage nucleosomes through two domains: the CD and the CENP-C motif (CM).
View Article and Find Full Text PDFThe number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results.
View Article and Find Full Text PDFMethods Mol Biol
February 2019
Cross-linking and mass spectrometry is used more and more for the structural analysis of large proteins and protein complexes. Although essentially a low-resolution method, it avoids the main drawbacks of established structural techniques. Particularly, it is largely insensitive to the inherent flexibility of the studied complexes and is applied under native conditions.
View Article and Find Full Text PDF