Microwave photonics (MWP) has unlocked a new paradigm for Radio Frequency (RF) signal processing by harnessing the inherent broadband and tunable nature of photonic components. Despite numerous efforts made to implement integrated MWP filters, a key RF processing functionality, it remains a long-standing challenge to achieve a fully integrated photonic circuit that can merge the megahertz-level spectral resolution required for RF applications with key electro-optic components. Here, we overcome this challenge by introducing a compact 5 mm × 5 mm chip-scale MWP filter with active E-O components, demonstrating 37 MHz spectral resolution.
View Article and Find Full Text PDFMicrowave photonics offers a promising solution for frequency converting microwave signals, however, demonstrations so far have either been bulky fibre implementations or lacked rejection of interfering image signals. Here, we demonstrate the first microwave photonic mixer with image rejection of broadband signals utilising chip-based stimulated Brillouin scattering and interferometry. We demonstrate frequency down-conversion of carrier frequencies ranging from 10 GHz-16 GHz, ultra-high image rejection for a single tone of up to 70 dB, and 100 MHz and 400 MHz wide analogue signals with 28.
View Article and Find Full Text PDFIn this paper, we demonstrate a self-homodyne coherent system with a significantly narrowed effective linewidth using optical carrier recovery based on stimulated Brillouin scattering (SBS), employing only coarse path length matching. The effective linewidth of the SBS-based receiver system is reduced from 75 kHz to less than 2 kHz, which is estimated by Lorentzian fitting of power spectra, and confirmed by simulation results of the tolerance window length for phase noise compensation (PNC) with different linewidth. Both experimental and numerical studies on the tracking requirements on PNC algorithms confirm effective linewidth reduction to this level, and show a 32x relaxation of the phase recovery tracking window length.
View Article and Find Full Text PDFStimulated Brillouin scattering has great potential for wide-wavelength-range optical carrier recovery, as it can act as a parametrically defined narrowband gain filter. However, due to the dispersion of the Brillouin frequency shift, prior demonstrations have been limited in wavelength range. Here, we demonstrate that frequency modulating the pump light for a gain filter based on stimulated Brillouin scattering enables optical carrier recovery for a broad range of input wavelengths.
View Article and Find Full Text PDFTrue-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators.
View Article and Find Full Text PDFIn this Letter, we report a chip-based photonic radio-frequency (RF) mixer with a maximum conversion gain of -9 and image rejection ratio of 50 dB for 3.2 GHz to 13.2 GHz RF frequency range.
View Article and Find Full Text PDFIn this Letter, we demonstrate a ${{\rm Si}_3}{{\rm N}_4}$SiN-chip-based photonic approach to generate versatile radio frequency (RF) waveforms with a large tuning range of repetition rates. The amplitude and phase of the RF-phase-modulated signal are spectrally manipulated to synthesize Fourier coefficients of the desired RF waveforms by controlling the resonance conditions and frequencies of ${{\rm Si}_3}{{\rm N}_4}$SiN optical ring resonators. Full-duty-cycle triangular, square, and sawtooth waveforms with widely tunable repetition rates from 1 to 13 GHz were experimentally generated.
View Article and Find Full Text PDFMicrowave photonic bandpass filters (MPBPFs) are important building blocks in radio-frequency (RF) signal processing systems. However, most of the reported MPBPFs fail to satisfy the stringent real-world performance metrics, particularly low RF insertion loss. In this paper we report a novel MPBPF scheme using two cascaded integrated silicon nitride (SiN) ring resonators, achieving a high link gain in the RF filter passband.
View Article and Find Full Text PDFDetection and frequency estimation of radio frequency (RF) signals are critical in modern RF systems, including wireless communication and radar. Photonic techniques have made huge progress in solving the problem imposed by the fundamental trade-off between detection range and accuracy. However, neither fiber-based nor integrated photonic RF signal detection and frequency estimation systems have achieved wide range and low error with high sensitivity simultaneously in a single system.
View Article and Find Full Text PDFStoring and delaying optical signals plays a crucial role in data centers, phased array antennas, communication, and future computing architectures. Here, we show a delay scheme based on cascaded Brillouin light storage that achieves multi-stage delay at arbitrary positions within a photonic integrated circuit. Importantly these multiple resonant transfers between the optical and acoustic domain are controlled solely via external optical control pulses, allowing cascading of the delay without the need of aligning multiple structural resonances along the optical circuit.
View Article and Find Full Text PDFRecent advances in design and fabrication of photonic-phononic waveguides have enabled stimulated Brillouin scattering in silicon-based platforms such as underetched silicon waveguides and hybrid waveguides. Due to the sophisticated design and, more importantly, high sensitivity of the Brillouin resonances to geometrical variations in micro- and nano-scale structures, it is necessary to have access to the localized opto-acoustic response along those waveguides to monitor their uniformity and maximize their interaction strength. In this Letter, we design and fabricate photonic-phononic waveguides with a deliberate width variation on a hybrid silicon-chalcogenide photonic chip and confirm the effect of the geometrical variation on the localized Brillouin response using a distributed Brillouin measurement.
View Article and Find Full Text PDFControlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation.
View Article and Find Full Text PDFOn-chip nonlinear optics is a thriving research field, which creates transformative opportunities for manipulating classical or quantum signals in small-footprint integrated devices. Since the length scales are short, nonlinear interactions need to be enhanced by exploiting materials with large nonlinearity in combination with high-Q resonators or slow-light structures. This, however, often results in simultaneous enhancement of competing nonlinear processes, which limit the efficiency and can cause signal distortion.
View Article and Find Full Text PDF