Publications by authors named "Moritz Link"

Terrestrial insectivores in riparian areas, such as spiders, can depend on emergent aquatic insects as high-quality prey. However, chemical pollution entering streams from agricultural and urban sources can alter the dynamics and composition of aquatic insect emergence, which may also affect the riparian food web. Few studies have examined the effects of stressor-induced alterations in aquatic insect emergence on spiders, especially in terms of chemical pollution and diet composition.

View Article and Find Full Text PDF

The increasing global life expectancy brings forth challenges associated with age-related cognitive and motor declines. To better understand underlying mechanisms, we investigated the connection between markers of biological brain aging based on magnetic resonance imaging (MRI), cognitive and motor performance, as well as modifiable vascular risk factors, using a large-scale neuroimaging analysis in 40,579 individuals of the population-based UK Biobank and Hamburg City Health Study. Employing partial least squares correlation analysis (PLS), we investigated multivariate associative effects between three imaging markers of biological brain aging - relative brain age, white matter hyperintensities of presumed vascular origin, and peak-width of skeletonized mean diffusivity - and multi-domain cognitive test performances and motor test results.

View Article and Find Full Text PDF

Streams and their riparian areas are important habitats and foraging sites for bats feeding on emergent aquatic insects. Chemical pollutants entering freshwater streams from agricultural and wastewater sources have been shown to alter aquatic insect emergence, yet little is known about how this impacts insectivorous bats in riparian areas. In this study, we investigate the relationships between the presence of wastewater effluent, in-stream pesticide toxicity, the number of emergent and flying aquatic insects, and the activity and hunting behaviour of bats at 14 streams in southwestern Germany.

View Article and Find Full Text PDF

Following agricultural application, pesticides can enter streams through runoff during rain events. However, little information is available on the temporal dynamics of pesticide toxicity during the main application period. We investigated pesticide application and large scale in-stream monitoring data from 101 agricultural catchments obtained from a Germany-wide monitoring from April to July in 2018 and 2019.

View Article and Find Full Text PDF

The decomposition of allochthonous organic matter, such as leaves, is a crucial ecosystem process in low-order streams. Microbial communities, including fungi and bacteria, colonize allochthonous organic material, break up large molecules, and increase the nutritional value for macroinvertebrates. Environmental variables are known to affect microbial as well as macroinvertebrate communities and alter their ability to decompose organic matter.

View Article and Find Full Text PDF

Emergent aquatic insects constitute an important food source for higher trophic levels, linking aquatic to terrestrial ecosystems. Little is known about how land use affects the biomass or composition of insect emergence. Previous studies are limited to individual time points or seasons, hampering understanding of annual biomass export patterns and detection of phenological changes.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional agricultural practices in Central and Eastern Europe create diverse landscapes that support high biodiversity, particularly beneficial for species like pollinators and amphibians, which are declining elsewhere in Europe.
  • Despite the ecological advantages, streams in these areas can experience significant pesticide exposure similar to Western Europe, raising concerns about water quality and its effect on local ecosystems.
  • Research on 19 streams in Central Romania showed no clear link between pesticide toxicity and macroinvertebrate health, but identified landscape heterogeneity and upstream forests as crucial for community resilience, indicating that varied agricultural practices might help mitigate some negative impacts of pesticide use.
View Article and Find Full Text PDF

The Water Framework Directive (WFD) demands that good status is to be achieved for all European water bodies. While governmental monitoring under the WFD mostly concludes a good status with regard to pesticide pollution, numerous scientific studies have demonstrated widespread negative ecological impacts of pesticide exposure in surface waters. To identify reasons for this discrepancy, we analysed pesticide concentrations measured in a monitoring campaign of 91 agricultural streams in 2018 and 2019 using methodologies that exceed the requirements of the WFD.

View Article and Find Full Text PDF

Despite elaborate regulation of agricultural pesticides, their occurrence in non-target areas has been linked to adverse ecological effects on insects in several field investigations. Their quantitative role in contributing to the biodiversity crisis is, however, still not known. In a large-scale study across 101 sites of small lowland streams in Central Europe, Germany we revealed that 83% of agricultural streams did not meet the pesticide-related ecological targets.

View Article and Find Full Text PDF

Pesticide contamination of agricultural streams has widely been analysed in regions of high intensity agriculture such as in Western Europe or North America. The situation of streams subject to low intensity agriculture relying on human and animal labour, as in parts of Romania, remains unknown. To close this gap, we determined concentrations of 244 pesticides and metabolites at 19 low-order streams, covering sites from low to high intensity agriculture in a region of Romania.

View Article and Find Full Text PDF

Rain events may impact the chemical pollution burden in rivers. Forty-four small streams in Germany were profiled during several rain events for the presence of 395 chemicals and five types of mixture effects in bioassays (cytotoxicity; activation of the estrogen, aryl hydrocarbon, and peroxisome proliferator-activated receptors; and oxidative stress response). While these streams were selected to cover a wide range of agricultural impacts, in addition to the expected pesticides, wastewater-derived chemicals and chemicals typical for street runoff were detected.

View Article and Find Full Text PDF

Freshwater ecosystems are coupled with their riparian area. Emerging insects are prey for predators in the riparian zone, enriching the terrestrial ecosystem with energy and nutrients. Stressors associated with agriculture can alter insect communities in water and on land, resulting in complex response patterns of terrestrial predators relying on prey from both systems.

View Article and Find Full Text PDF

ADAM17 is a member of the A Disintegrin And Metalloproteinase family of proteases. It is ubiquitously expressed and causes the shedding of a broad spectrum of surface proteins such as adhesion molecules, cytokines and cytokine receptors. By controlled shedding of these proteins from leukocytes, ADAM17 is able to regulate immune responses.

View Article and Find Full Text PDF

Incomplete removal during wastewater treatment leads to frequent detection of compounds such as pharmaceuticals and personal care products in municipal effluents. A fixed standard dilution factor of 10 for effluents entering receiving water bodies is used during the exposure assessment of several chemical risk assessments. However, the dilution potential of German receiving waters under low flow conditions is largely unknown and information is sparse for other European countries.

View Article and Find Full Text PDF

Neonicotinoids are increasingly applied on trees as protection measure against insect pests. Consequently, neonicotinoids are inevitably transferred into aquatic environments either via spray drift or surface runoff or (due to neonicotinoids' systemic nature) via senescent leaves. There particularly leaf-shredding invertebrates may be exposed to neonicotinoids through both the water phase and the consumption of contaminated leaves.

View Article and Find Full Text PDF