Publications by authors named "Moritz Kraemer"

East, South, and Southeast Asia (together referred to as Southeastern Asia hereafter) have been recognized as critical areas fuelling the global circulation of seasonal influenza. However, the seasonal influenza migration network within Southeastern Asia remains unclear, including how pandemic-related disruptions altered this network. We leveraged genetic, epidemiological, and airline travel data between 2007-2023 to characterise the dispersal patterns of influenza A/H3N2 and B/Victoria viruses both out of and within Southeastern Asia, including during perturbations by the 2009 A/H1N1 and COVID-19 pandemics.

View Article and Find Full Text PDF
Article Synopsis
  • Tracking emerging pathogens is essential for effective public health responses, and this study models resource allocation for testing as a decision-making problem involving locations as nodes on a graph.
  • The researchers evaluate different active learning policies for selecting testing locations, comparing their effectiveness in various outbreak scenarios through simulations on both synthetic and real-world networks.
  • A new policy that considers the distance-weighted average entropy shows improved performance over existing methods, emphasizing the importance of balancing exploration and exploitation in developing surveillance strategies for pathogen monitoring.
View Article and Find Full Text PDF

Background: Dengue is a significant global public health concern that poses a threat in Africa. Particularly, African countries are at risk of viral introductions through air travel connectivity with areas of South America and Asia in which explosive dengue outbreaks frequently occur. Limited reporting and diagnostic capacity hinder a comprehensive assessment of continent-wide transmission dynamics and deployment of surveillance strategies in Africa.

View Article and Find Full Text PDF

In March 2024, the Pan American Health Organization (PAHO) issued an alert in response to a rapid increase in Oropouche fever cases across South America. Brazil has been particularly affected, reporting a novel reassortant lineage of the Oropouche virus (OROV) and expansion to previously non-endemic areas beyond the Amazon Basin. Utilising phylogeographic approaches, we reveal a multi-scale expansion process with both short and long-distance dispersal events, and diffusion velocities in line with human-mediated jumps.

View Article and Find Full Text PDF

Background: Dengue is a significant global public health concern that poses a threat to Africa. Particularly, African countries are at risk of viral introductions through air travel connectivity with areas of South America and Asia that experience frequent explosive outbreaks. Limited reporting and diagnostic capacity hinder a comprehensive assessment of continent-wide transmission dynamics and deployment of surveillance strategies in Africa.

View Article and Find Full Text PDF

Human mobility is strongly associated with the spread of SARS-CoV-2 via air travel on an international scale and with population mixing and the number of people moving between locations on a local scale. However, these conclusions are drawn mostly from observations in the context of the global north where international and domestic connectivity is heavily influenced by the air travel network; scenarios where land-based mobility can also dominate viral spread remain understudied. Furthermore, research on the effects of nonpharmaceutical interventions (NPIs) has mostly focused on national- or regional-scale implementations, leaving gaps in our understanding of the potential benefits of implementing NPIs at higher granularity.

View Article and Find Full Text PDF

The global dynamics of seasonal influenza viruses inform the design of surveillance, intervention, and vaccination strategies. The COVID-19 pandemic provided a singular opportunity to evaluate how influenza circulation worldwide was perturbed by human behavioral changes. We combine molecular, epidemiological, and international travel data and find that the pandemic's onset led to a shift in the intensity and structure of international influenza lineage movement.

View Article and Find Full Text PDF

Background: Understanding underlying mechanisms of heterogeneity in test-seeking and reporting behaviour during an infectious disease outbreak can help to protect vulnerable populations and guide equity-driven interventions. The COVID-19 pandemic probably exerted different stresses on individuals in different sociodemographic groups and ensuring fair access to and usage of COVID-19 tests was a crucial element of England's testing programme. We aimed to investigate the relationship between sociodemographic factors and COVID-19 testing behaviours in England during the COVID-19 pandemic.

View Article and Find Full Text PDF

During outbreaks of emerging infectious diseases, internationally connected cities often experience large and early outbreaks, while rural regions follow after some delay. This hierarchical structure of disease spread is influenced primarily by the multiscale structure of human mobility. However, during the COVID-19 epidemic, public health responses typically did not take into consideration the explicit spatial structure of human mobility when designing nonpharmaceutical interventions (NPIs).

View Article and Find Full Text PDF

Vast amounts of pathogen genomic, demographic and spatial data are transforming our understanding of SARS-CoV-2 emergence and spread. We examined the drivers of molecular evolution and spread of 291,791 SARS-CoV-2 genomes from Denmark in 2021. With a sequencing rate consistently exceeding 60%, and up to 80% of PCR-positive samples between March and November, the viral genome set is broadly whole-epidemic representative.

View Article and Find Full Text PDF

In Ethiopia, dengue virus (DENV) infections have been reported in several regions, however, little is known about the circulating genetic diversity. Here, we conducted clinical surveillance for DENV during the 2023 nationwide outbreak and sequenced DENV whole genomes for the first time in Ethiopia. We enrolled patients at three sentinel hospital sites.

View Article and Find Full Text PDF

Understanding how emerging infectious diseases spread within and between countries is essential to contain future pandemics. Spread to new areas requires connectivity between one or more sources and a suitable local environment, but how these two factors interact at different stages of disease emergence remains largely unknown. Further, no analytical framework exists to examine their roles.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 variants of concern (VOCs), like Alpha from the UK, spread silently before being officially recognized, complicating timely interventions.
  • Researchers analyzed the early spread of Alpha using various data sources, revealing that silent circulation could last from days to months and was influenced by the amount of genomic sequencing.
  • The study highlights that implementing social restrictions in certain regions might have helped slow down local transmission, emphasizing the importance of proactive measures during emerging threats.
View Article and Find Full Text PDF

The COVID-19 pandemic offers an unprecedented natural experiment providing insights into the emergence of collective behavioral changes of both exogenous (government mandated) and endogenous (spontaneous reaction to infection risks) origin. Here, we characterize collective physical distancing-mobility reductions, minimization of contacts, shortening of contact duration-in response to the COVID-19 pandemic in the pre-vaccine era by analyzing de-identified, privacy-preserving location data for a panel of over 5.5 million anonymized, opted-in U.

View Article and Find Full Text PDF
Article Synopsis
  • The text serves as a correction for a previously published article, identified by the DOI 10.1371/journal.pmed.1003793.
  • It indicates that there were errors or inaccuracies in the original publication that needed to be addressed.
  • The correction ensures the integrity and accuracy of the scientific record for readers and researchers.
View Article and Find Full Text PDF

Background: Aedes (Stegomyia)-borne diseases are an expanding global threat, but gaps in surveillance make comprehensive and comparable risk assessments challenging. Geostatistical models combine data from multiple locations and use links with environmental and socioeconomic factors to make predictive risk maps. Here we systematically review past approaches to map risk for different Aedes-borne arboviruses from local to global scales, identifying differences and similarities in the data types, covariates, and modelling approaches used.

View Article and Find Full Text PDF
Article Synopsis
  • Vaccinated individuals can still experience severe COVID-19 requiring hospitalization, but it's unclear how they compare to unvaccinated patients in terms of symptoms, comorbidities, and outcomes.
  • A study analyzed data from over 83,000 hospitalized COVID-19 patients globally, noting that unvaccinated patients reported more typical symptoms, while vaccinated patients had a higher prevalence of concerning comorbidities.
  • The findings highlight the need for better healthcare resource allocation and future international studies to understand how vaccination impacts the clinical profiles of hospitalized COVID-19 patients.
View Article and Find Full Text PDF

We performed phylogenetic analysis on dengue virus serotype 2 Cosmopolitan genotype in Ho Chi Minh City, Vietnam. We document virus emergence, probable routes of introduction, and timeline of events. Our findings highlight the need for continuous, systematic genomic surveillance to manage outbreaks and forecast future epidemics.

View Article and Find Full Text PDF

Background: Aedes-borne arboviruses cause both seasonal epidemics and emerging outbreaks with a significant impact on global health. These viruses share mosquito vector species, often infecting the same host population within overlapping geographic regions. Thus, comparative analyses of the virus evolutionary and epidemiological dynamics across spatial and temporal scales could reveal convergent trends.

View Article and Find Full Text PDF

Over 200 different SARS-CoV-2 lineages have been observed in Mexico by November 2021. To investigate lineage replacement dynamics, we applied a phylodynamic approach and explored the evolutionary trajectories of five dominant lineages that circulated during the first year of local transmission. For most lineages, peaks in sampling frequencies coincided with different epidemiological waves of infection in Mexico.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) now arise in the context of heterogeneous human connectivity and population immunity. Through a large-scale phylodynamic analysis of 115,622 Omicron BA.1 genomes, we identified >6,000 introductions of the antigenically distinct VOC into England and analyzed their local transmission and dispersal history.

View Article and Find Full Text PDF

The Alpha, Beta, and Gamma SARS-CoV-2 variants of concern (VOCs) co-circulated globally during 2020 and 2021, fueling waves of infections. They were displaced by Delta during a third wave worldwide in 2021, which, in turn, was displaced by Omicron in late 2021. In this study, we use phylogenetic and phylogeographic methods to reconstruct the dispersal patterns of VOCs worldwide.

View Article and Find Full Text PDF

During the COVID-19 pandemic, open-access platforms that aggregate, link and analyse data were transformative for global public health surveillance. This perspective explores the work of three of these platforms: Our World In Data (OWID), Johns Hopkins University (JHU) COVID-19 Dashboard (later complemented by the Coronavirus Resource Center), and Global.Health, which were presented in the second World Health Organization (WHO) Pandemic and Epidemic Intelligence Innovation Forum.

View Article and Find Full Text PDF

Novel data and analyses have had an important role in informing the public health response to the COVID-19 pandemic. Existing surveillance systems were scaled up, and in some instances new systems were developed to meet the challenges posed by the magnitude of the pandemic. We describe the routine and novel data that were used to address urgent public health questions during the pandemic, underscore the challenges in sustainability and equity in data generation, and highlight key lessons learnt for designing scalable data collection systems to support decision making during a public health crisis.

View Article and Find Full Text PDF