Publications by authors named "Moritz J Hundertmark"

P magnetic resonance spectroscopic imaging (P MRSI) is a powerful technique for investigating the metabolic effects of treatments for heart failure , allowing a better understanding of their mechanism of action in patient cohorts. Unfortunately, cardiac P MRSI is fundamentally limited by low SNR, which leads to compromises in acquisition, such as no cardiac or respiratory gating or low spatial resolution, in order to achieve reasonable scan times. Spectroscopy with linear algebra modeling (SLAM) reconstruction may be able to address these challenges and therefore improve repeatability by incorporating a segmented localizer into the reconstruction.

View Article and Find Full Text PDF

Background: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) have emerged as a paramount treatment for patients with heart failure (HF), irrespective of underlying reduced or preserved ejection fraction. However, a definite cardiac mechanism of action remains elusive. Derangements in myocardial energy metabolism are detectable in all HF phenotypes, and it was proposed that SGLT2i may improve energy production.

View Article and Find Full Text PDF

Most patients survive acute myocardial infarction (MI). Yet this encouraging development has certain drawbacks: heart failure (HF) prevalence is increasing and patients affected tend to have more comorbidities worsening economic strain on healthcare systems and impeding effective medical management. The heart's pathological changes in structure and/or function, termed myocardial remodelling, significantly impact on patient outcomes.

View Article and Find Full Text PDF

Aims: Despite substantial improvements over the last three decades, heart failure (HF) remains associated with a poor prognosis. The sodium-glucose co-transporter-2 inhibitor empagliflozin demonstrated significant reductions of HF hospitalization in patients with HF independent of the presence or absence of type 2 diabetes mellitus in the EMPEROR-Reduced trial and cardiovascular mortality in the EMPA-REG OUTCOME trial. To further elucidate the mechanisms behind these positive outcomes, this study aims to determine the effects of empagliflozin treatment on cardiac energy metabolism and physiology using magnetic resonance spectroscopy (MRS) and cardiovascular magnetic resonance (CMR).

View Article and Find Full Text PDF

Background: Why some but not all patients with severe aortic stenosis (SevAS) develop otherwise unexplained reduced systolic function is unclear. We investigate the hypothesis that reduced creatine kinase (CK) capacity and flux is associated with this transition.

Methods: We recruited 102 participants to 5 groups: moderate aortic stenosis (ModAS) (n=13), SevAS, left ventricular (LV) ejection fraction ≥55% (SevAS-preserved ejection fraction, n=37), SevAS, LV ejection fraction <55% (SevAS-reduced ejection fraction, n=15), healthy volunteers with nonhypertrophied hearts with normal systolic function (normal healthy volunteer, n=30), and patients with nonhypertrophied, non-pressure-loaded hearts with normal systolic function undergoing cardiac surgery and donating LV biopsy (non-pressure-loaded heart biopsy, n=7).

View Article and Find Full Text PDF

Changes in the kinetics of the creatine kinase (CK) shuttle are sensitive markers of cardiac energetics but are typically measured at rest and in the prone position. This study aims to measure CK kinetics during pharmacological stress at 3 T, with measurement in the supine position. A shorter "stressed saturation transfer" (StreST) extension to the triple repetition time saturation transfer (TRiST) method is proposed.

View Article and Find Full Text PDF