IEEE J Biomed Health Inform
July 2024
Digital pathology adoption allows for applying computational algorithms to routine pathology tasks. Our study aimed to develop a clinical-grade artificial intelligence (AI) tool for precise multiclass tissue segmentation in colorectal specimens (resections and biopsies) and clinically validate the tool for tumor detection in biopsy specimens. The training data set included 241 precisely manually annotated whole-slide images (WSIs) from multiple institutions.
View Article and Find Full Text PDFBackground: In recent years, AI has made significant advancements in medical diagnosis and prognosis. However, the incorporation of AI into clinical practice is still challenging and under-appreciated. We aim to demonstrate a possible vertical integration approach to close the loop for AI-ready radiology.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
July 2023
Purpose: Image-to-image translation methods can address the lack of diversity in publicly available cataract surgery data. However, applying image-to-image translation to videos-which are frequently used in medical downstream applications-induces artifacts. Additional spatio-temporal constraints are needed to produce realistic translations and improve the temporal consistency of translated image sequences.
View Article and Find Full Text PDFLancet Digit Health
May 2023
Background: Oesophageal adenocarcinoma and adenocarcinoma of the oesophagogastric junction are among the most common malignant epithelial tumours. Most patients receive neoadjuvant therapy before complete tumour resection. Histological assessment after resection includes identification of residual tumour tissue and areas of regressive tumour, data which are used to calculate a clinically relevant regression score.
View Article and Find Full Text PDFAutomatic segmentation of ground glass opacities and consolidations in chest computer tomography (CT) scans can potentially ease the burden of radiologists during times of high resource utilisation. However, deep learning models are not trusted in the clinical routine due to failing silently on out-of-distribution (OOD) data. We propose a lightweight OOD detection method that leverages the Mahalanobis distance in the feature space and seamlessly integrates into state-of-the-art segmentation pipelines.
View Article and Find Full Text PDF