IEEE Trans Med Imaging
September 2021
The aim of this paper is to provide a comprehensive overview of the MICCAI 2020 AutoImplant Challenge. The approaches and publications submitted and accepted within the challenge will be summarized and reported, highlighting common algorithmic trends and algorithmic diversity. Furthermore, the evaluation results will be presented, compared and discussed in regard to the challenge aim: seeking for low cost, fast and fully automated solutions for cranial implant design.
View Article and Find Full Text PDFWe present a method for the automated segmentation of knee bones and cartilage from magnetic resonance imaging (MRI) that combines a priori knowledge of anatomical shape with Convolutional Neural Networks (CNNs). The proposed approach incorporates 3D Statistical Shape Models (SSMs) as well as 2D and 3D CNNs to achieve a robust and accurate segmentation of even highly pathological knee structures. The shape models and neural networks employed are trained using data from the Osteoarthritis Initiative (OAI) and the MICCAI grand challenge "Segmentation of Knee Images 2010" (SKI10), respectively.
View Article and Find Full Text PDFBackground: Fossil ticks are extremely rare and Ixodes succineus Weidner, 1964 from Eocene (ca. 44-49 Ma) Baltic amber is one of the oldest examples of a living hard tick genus (Ixodida: Ixodidae). Previous work suggested it was most closely related to the modern and widespread European sheep tick Ixodes ricinus (Linneaus, 1758).
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2013
We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.
View Article and Find Full Text PDF