Publications by authors named "Moritz Eggeling"

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements.

View Article and Find Full Text PDF

In this paper, we present a novel concept for a multi-channel swept source optical coherence tomography (OCT) system based on photonic integrated circuits (PICs). At the core of this concept is a low-loss polarization dependent path routing approach allowing for lower excess loss compared to previously shown PIC-based OCT systems, facilitating a parallelization of measurement units. As a proof of concept for the low-loss path routing, a silicon nitride PIC-based single-channel swept source OCT system operating at 840 nm was implemented and used to acquire in-vivo tomograms of a human retina.

View Article and Find Full Text PDF