Publications by authors named "Morito Takano"

Study Design: Retrospective case-control study.

Purpose: To understand the prevalence of persistent orthostatic hypotension (POH), as well as its risk factors and cardiovascular pathology, in patients receiving surgery for the adult spinal deformity (ASD).

Overview Of Literature: Although reports of the incidence of and risk factors for POH in different spinal disorders have recently been published, we are not aware of the comprehensive evaluation of POH following surgery for ASD.

View Article and Find Full Text PDF

Background: Spinal extradural arachnoid cysts are thought to be pouches that communicate with the intraspinal subarachnoid space through a dural defect. The treatment for these cysts is resection of the cyst wall followed by obliteration of the communicating defect, which is often elusive.

Observations: The authors report the case of a 22-year-old man with an extradural arachnoid cyst with claudication and progressive motor weakness.

View Article and Find Full Text PDF

Case: A 70-year-old woman presented with severe trunk deformity, gait disturbance, and bilateral hip pain. Radiography and magnetic resonance imaging revealed severe spinal kyphosis, bilateral osteoarthritis of the hip joints, and lumbar canal stenosis. A 2-stage corrective surgery for the treatment of spinal kyphosis was performed.

View Article and Find Full Text PDF

Study Design: Diagnostic study.

Objective: Although C5 palsy is a well-known potential complication after cervical procedure, the exact pathophysiology remains uncertain. Diffusion tensor tractography (DTT) has recently been proposed as a useful tool to examine quantitatively and non-invasively the pathology of spinal cord disorders.

View Article and Find Full Text PDF

Progress in regenerative medicine is realizing the possibility of neural regeneration and functional recovery in spinal cord injury (SCI). Recently, rehabilitation has attracted much attention with respect to the synergistic promotion of functional recovery in combination with neural stem/progenitor cell (NS/PC) transplantation, even in the chronic refractory phase of SCI. Nevertheless, sensory disturbance is one of the most prominent sequelae, even though the effects of combination or single therapies have been investigated mostly in the context of motor recovery.

View Article and Find Full Text PDF

Background: Posterior epidural migration of lumbar disc fragments (PEMLDF) is extremely rare. It is often confused with other posterior lesions and is usually diagnosed intraoperatively. We here describe the use of preoperative discography in the diagnosis of PEMLDF.

View Article and Find Full Text PDF

The number of elderly patients with spinal cord injury (SCI) is increasing worldwide, representing a serious burden for both the affected patients and the community. Previous studies have demonstrated that neural stem cell (NSC) transplantation is an effective treatment for SCI in young animals. Here we show that NSC transplantation is as effective in aged mice as it is in young mice, even though aged mice exhibit more severe neurological deficits after SCI.

View Article and Find Full Text PDF

Murine- and human-induced pluripotent stem cell-derived neural stem/progenitor cells (iPSC-NS/PCs) promote functional recovery following transplantation into the injured spinal cord in rodents and primates. Although remyelination of spared demyelinated axons is a critical mechanism in the regeneration of the injured spinal cord, human iPSC-NS/PCs predominantly differentiate into neurons both in vitro and in vivo. We therefore took advantage of our recently developed protocol to obtain human-induced pluripotent stem cell-derived oligodendrocyte precursor cell-enriched neural stem/progenitor cells and report the benefits of transplanting these cells in a spinal cord injury (SCI) model.

View Article and Find Full Text PDF

Our previous work reported functional recovery after transplantation of mouse and human induced pluripotent stem cell-derived neural stem/progenitor cells (hiPSC-NS/PCs) into rodent models of spinal cord injury (SCI). Although hiPSC-NS/PCs proved useful for the treatment of SCI, the tumorigenicity of the transplanted cells must be resolved before they can be used in clinical applications. The current study sought to determine the feasibility of ablation of the tumors formed after hiPSC-NS/PC transplantation through immunoregulation.

View Article and Find Full Text PDF

Recent studies have demonstrated that transplantation of induced pluripotent stem cell-derived neurospheres can promote functional recovery after spinal cord injury in rodents, as well as in nonhuman primates. However, the potential tumorigenicity of the transplanted cells remains a matter of apprehension prior to clinical applications. As a first step to overcome this concern, this study established a glioblastoma multiforme xenograft model mouse.

View Article and Find Full Text PDF

Background: Cervical compressive myelopathy (CCM) is caused by chronic spinal cord compression due to spondylosis, a degenerative disc disease, and ossification of the ligaments. Tip-toe walking Yoshimura (twy) mice are reported to be an ideal animal model for CCM-related neuronal dysfunction, because they develop spontaneous spinal cord compression without any artificial manipulation. Previous histological studies showed that neurons are lost due to apoptosis in CCM, but the mechanism underlying this neurodegeneration was not fully elucidated.

View Article and Find Full Text PDF

Secondary degeneration after spinal cord injury (SCI) is caused by increased vascular permeability, infiltration of inflammatory cells, and subsequent focal edema. Therapeutic interventions using neurotrophic factors have focused on the prevention of such reactions to reduce cell death and promote tissue regeneration. Vascular endothelial growth factor (VEGF) is a potent angiogenic and vascular permeability factor.

View Article and Find Full Text PDF

Transplantation of neural stem/progenitor cells (NS/PCs) promotes functional recovery after spinal cord injury (SCI); however, few studies have examined the optimal site of NS/PC transplantation in the spinal cord. The purpose of this study was to determine the optimal transplantation site of NS/PCs for the treatment of SCI. Wild-type mice were generated with contusive SCI at the T10 level, and NS/PCs were derived from fetal transgenic mice.

View Article and Find Full Text PDF

The paranodal junction is a specialized axon-glia contact zone that is important for normal neuronal activity and behavioral locomotor function in the central nervous system (CNS). Histological examination has been the only method for detecting pathological paranodal junction conditions. Recently, diffusion tensor MRI (DTI) has been used to detect microstructural changes in various CNS diseases.

View Article and Find Full Text PDF

Background: The transplantation of neural stem/progenitor cells (NS/PCs) at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases.

View Article and Find Full Text PDF

Study Design: Basic imaging experiment.

Objective: To determine whether in vivo diffusion tensor tractography (DTT) can be used to evaluate the axonal disruption of the chronically compressed spinal cord in tiptoe walking Yoshimura (twy) mice.

Summary Of Background Data: In cervical ossification of the posterior longitudinal ligament, axonal disruption results in motor and sensory functional impairment.

View Article and Find Full Text PDF

Neural stem cells (NSCs) were directly induced from mouse fibroblasts using four reprogramming factors (Oct4, Sox2, Klf4, and cMyc) without the clonal isolation of induced pluripotent stem cells (iPSCs). These NSCs gave rise to both neurons and glial cells even at early passages, while early NSCs derived from clonal embryonic stem cells (ESCs)/iPSCs differentiated mainly into neurons. Epidermal growth factor-dependent neurosphere cultivation efficiently propagated these gliogenic NSCs and eliminated residual pluripotent cells that could form teratomas in vivo.

View Article and Find Full Text PDF

Previous reports of functional recovery from spinal cord injury (SCI) in rodents and monkeys after the delayed transplantation of neural stem/progenitor cells (NS/PCs) have raised hopes that stem cell therapy could be used to treat SCI in humans. More research is needed, however, to understand the mechanism of functional recovery. Oligodendrocytes derived from grafted NS/PCs remyelinate spared axons in the injured spinal cord.

View Article and Find Full Text PDF

An 80-year-old man was admitted because of appetite loss, mild proteinuria, and leg edema. A computed tomography examination revealed a tumor in his left kidney, and a left nephrectomy was performed. The tumor was histologically diagnosed as a clear cell type renal cell carcinoma, and hematoxylin eosin staining of the non-tumor region of the resected kidney showed an almost normal morphology.

View Article and Find Full Text PDF