Publications by authors named "Moriaud F"

Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates.

View Article and Find Full Text PDF

Predicting off-targets by computational methods is gaining increasing interest in early-stage drug discovery. Here, we present a computational method based on full 3D comparisons of 3D structures. When a similar binding site is detected in the Protein Data Bank (PDB) (or any protein structure database), it is possible that the corresponding ligand also binds to that similar site.

View Article and Find Full Text PDF

Ligand-protein interactions are essential for biological processes, and precise characterization of protein binding sites is crucial to understand protein functions. MED-SuMo is a powerful technology to localize similar local regions on protein surfaces. Its heuristic is based on a 3D representation of macromolecules using specific surface chemical features associating chemical characteristics with geometrical properties.

View Article and Find Full Text PDF

Three-dimensional structural information is critical for understanding functional protein properties and the precise mechanisms of protein functions implicated in physiological and pathological processes. Comparison and detection of protein binding sites are key steps for annotating structures with functional predictions and are extremely valuable steps in a drug design process. In this research area, MED-SuMo is a powerful technology to detect and characterize similar local regions on protein surfaces.

View Article and Find Full Text PDF

Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix alpha2 (L5/alpha2).

View Article and Find Full Text PDF

Resolved three-dimensional protein structures are a major source of information for understanding protein functional properties. The current explosive growth of publicly available protein structures is producing large volumes of data for computational modelling and drug design methods. Target-based in silico drug design tools aid design and optimize compounds to bind to specific targets.

View Article and Find Full Text PDF

The large volume of protein-ligand structures now available enables innovative and efficient protocols in computational FBDD (Fragment-Based Drug Design) to be proposed based on experimental data. In this work, we build a database of MED-Portions, where a MED-Portion is a new structural object encoding protein-fragment binding sites. MED-Portions are derived from mining all available protein-ligand structures with any library of small molecules.

View Article and Find Full Text PDF

Whole-genome sequencing projects are a major source of unknown function proteins. However, as predicting protein function from sequence remains a difficult task, research groups recently started to use 3D protein structures and structural models to bypass it. MED-SuMo compares protein surfaces analyzing the composition and spatial distribution of specific chemical groups (hydrogen bond donor, acceptor, positive, negative, aromatic, hydrophobic, guanidinium, hydroxyl, acyl and glycine).

View Article and Find Full Text PDF

(57)Fe Q-band ENDOR has been used to study the [4Fe-4S](1+) state created by gamma irradiation of single crystals of the synthetic model compound [N(C(2)H(5))(4)](2)[Fe(4)S(4)(SCH(2)C(6)H(5))(4)] enriched in (57)Fe. This compound is an excellent biomimetic model of the active sites of many 4 iron-4 sulfur proteins, enabling detailed and systematic studies of its oxidized [4Fe-4S](3+) and reduced [4Fe-4S](1+) paramagnetic states. Taking advantage of the fact that Q-band ENDOR, in contrast with X-Band ENDOR, allows for a very good separation of the (57)Fe transitions from those of the protons, the complete hyperfine tensors of the four iron atoms for the [4Fe-4S](1+) species has been measured with precision.

View Article and Find Full Text PDF

Two-dimensional proton nuclear magnetic resonance spectroscopy has been used to determine the three-dimensional structure of the 62 amino acid C-terminal cellulose-binding domain (CBD) of the endoglucanase Z (CBDEGZ), secreted by Erwinia chrysanthemi. An experimental data set comprising 958 interproton nOe-derived restraints was used to calculate 23 structures. The calculated structures have an average root-mean-square deviation between Cys4 and Cys61 of 0.

View Article and Find Full Text PDF