Striated myocytes compose about half of the cells of the heart, while contributing the majority of the heart's mass and volume. In response to increased demands for pumping power, including in diseases of pressure and volume overload, the contractile myocytes undergo non-mitotic growth, resulting in increased heart mass, i.e.
View Article and Find Full Text PDFThe ubiquitous Ca /calmodulin-dependent phosphatase calcineurin is a key regulator of pathological cardiac hypertrophy whose therapeutic targeting in heart disease has been elusive due to its role in other essential biological processes. Calcineurin is targeted to diverse intracellular compartments by association with scaffold proteins, including by multivalent A-kinase anchoring proteins (AKAPs) that bind protein kinase A and other important signalling enzymes determining cardiac myocyte function and phenotype. Calcineurin anchoring by AKAPs confers specificity to calcineurin function in the cardiac myocyte.
View Article and Find Full Text PDFClass IIa histone deacetylases (HDACs) are transcriptional repressors whose nuclear export in the cardiac myocyte is associated with the induction of pathological gene expression and cardiac remodeling. Class IIa HDACs are regulated by multiple, functionally opposing post-translational modifications, including phosphorylation by protein kinase D (PKD) that promotes nuclear export and phosphorylation by protein kinase A (PKA) that promotes nuclear import. We have previously shown that the scaffold protein muscle A-kinase anchoring protein β (mAKAPβ) orchestrates signaling in the cardiac myocyte required for pathological cardiac remodeling, including serving as a scaffold for both PKD and PKA.
View Article and Find Full Text PDF