Publications by authors named "Moriah E Katt"

The endothelial glycocalyx (GCX), located on the luminal surface of vascular endothelial cells, is composed of glycoproteins, proteoglycans, and glycosaminoglycans. It plays a pivotal role in maintaining blood-brain barrier (BBB) integrity and vascular health within the central nervous system (CNS), influencing critical processes such as blood flow regulation, inflammation modulation, and vascular permeability. While the GCX is ubiquitously expressed on the surface of every cell in the body, the GCX at the BBB is highly specialized, with a distinct composition of glycans, physical structure, and surface charge when compared to GCX elsewhere in the body.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) represents a significant bottleneck for the delivery of therapeutics to the central nervous system. In recent years, the promise of coopting BBB receptor-mediated transport systems for brain drug delivery has increased in large part due to the discovery and engineering of BBB-targeting antibodies. Here we describe an innovative screening platform for identification of new BBB targeting molecules from a class of lamprey antigen recognition proteins known as variable lymphocyte receptors (VLRs).

View Article and Find Full Text PDF

Oxidative stress is caused by an imbalance between the generation and detoxification of reactive oxygen and nitrogen species (ROS/RNS). This imbalance plays an important role in brain aging and age-related neurodegenerative diseases. In the context of Parkinson's disease (PD), the sensitivity of dopaminergic neurons in the substantia nigra pars compacta to oxidative stress is considered a key factor of PD pathogenesis.

View Article and Find Full Text PDF

Brain mural cells, including pericytes and vascular smooth muscle cells, are important for vascular development, blood-brain barrier function, and neurovascular coupling, but the molecular characteristics of human brain mural cells are incompletely characterized. Single cell RNA-sequencing (scRNA-seq) is increasingly being applied to assess cellular diversity in the human brain, but the scarcity of mural cells in whole brain samples has limited their molecular profiling. Here, we leverage the combined power of multiple independent human brain scRNA-seq datasets to build a transcriptomic database of human brain mural cells.

View Article and Find Full Text PDF

Development of brain therapeutics is significantly hampered by the presence of the blood-brain barrier (BBB). Classical transwell models are able to recapitulate many important aspects of drug transport across the BBB, but are not completely predictive of brain uptake. Species differences further complicate translation of experimental therapeutics from the benchtop to the clinic.

View Article and Find Full Text PDF

Background: Blood-brain barrier dysfunction is associated with many late-stage neurodegenerative diseases. An emerging question is whether the mutations associated with neurodegenerative diseases can independently lead to blood-brain barrier (BBB) dysfunction. Studies from patient-derived induced pluripotent stem cells suggest that mutations associated with neurodegenerative disease are non-cell autonomous, resulting in gain of toxic function in derived neurons and astrocytes.

View Article and Find Full Text PDF

Numerous approaches have been employed to improve the efficacy of drug and gene delivery systems, but their strategic development is hindered by a lack of mechanistic understanding and assessment of drug transport and action. Optimizing the efficiency of a drug delivery system requires a detailed understanding of the pharmacokinetics, transendothelial transport, distribution at the tumor site, and uptake in target cells. Elucidating transport kinetics and rate-limiting steps in animal models can be extremely challenging, while platforms often fail to recapitulate the complexities of drug transport .

View Article and Find Full Text PDF

Background: Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering.

Methods: To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function.

View Article and Find Full Text PDF

Metastasis can be generalized as a linear sequence of events whereby halting one or more steps in the cascade may reduce tumor cell dissemination and ultimately improve patient outcomes. However, metastasis is a complex process with multiple parallel mechanisms of dissemination. Clinical strategies focus on removing the primary tumor and/or treating distant metastases through chemo- or immunotherapies.

View Article and Find Full Text PDF

The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem.

View Article and Find Full Text PDF

In vitro tumor models have provided important tools for cancer research and serve as low-cost screening platforms for drug therapies; however, cancer recurrence remains largely unchecked due to metastasis, which is the cause of the majority of cancer-related deaths. The need for an improved understanding of the progression and treatment of cancer has pushed for increased accuracy and physiological relevance of in vitro tumor models. As a result, in vitro tumor models have concurrently increased in complexity and their output parameters further diversified, since these models have progressed beyond simple proliferation, invasion, and cytotoxicity screens and have begun recapitulating critical steps in the metastatic cascade, such as intravasation, extravasation, angiogenesis, matrix remodeling, and tumor cell dormancy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionfjau1u83ejgqn9tbc4hema7tfmkd9u2h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once