Publications by authors named "Morgavi D"

This publication aims to provide guidelines of the knowledge required and the potential research to be conducted in order to understand the mode of action of antimethanogenic feed additives (AMFA). In the first part of the paper, we classify AMFA into 4 categories according to their mode of action: (1) lowering dihydrogen (H) production; (2) inhibiting methanogens; (3) promoting alternative H-incorporating pathways; and (4) oxidizing methane (CH). The second part of the paper presents questions that guide the research to identify the mode of action of an AMFA on the rumen CH production from 5 different perspectives: (1) microbiology; (2) cell and molecular biochemistry; (3) microbial ecology; (4) animal metabolism; and (5) cross-cutting aspects.

View Article and Find Full Text PDF

The ruminant microbiome plays a key role in the health, feed utilization and environmental impact of ruminant production systems. Microbiome research provides insights to reduce the environmental footprint and improve meat and milk production from ruminants. However, the microbiome composition depends on the ruminant species, habitat and diet, highlighting the importance of having a good representation of ruminant microbiomes in their local environment to translate research findings into beneficial approaches.

View Article and Find Full Text PDF

Mitigation of methane emission, a potent greenhouse gas, is a worldwide priority to limit global warming. A substantial part of anthropogenic methane is emitted by the livestock sector, as methane is a normal product of ruminant digestion. We present the latest developments and challenges ahead of the main efficient mitigation strategies of enteric methane production in ruminants.

View Article and Find Full Text PDF

Intensification of livestock systems becomes essential to meet the food demand of the growing world population, but it is important to consider the environmental impact of these systems. To assess the potential of forage-based livestock systems to offset greenhouse gas (GHG) emissions, the net carbon (C) balance of four systems in the Brazilian Amazon Biome was estimated: livestock (L) with a monoculture of Marandu palisade grass [Brachiaria brizantha (Hochst. ex A.

View Article and Find Full Text PDF

Nitrogen use efficiency is an important index in ruminants and can be indirectly evaluated through the N isotopic discrimination between the animal and its diet (Δ15Nanimal-diet). The concentration and source of N may determine both the extent of the N isotopic discrimination in bacteria and N use efficiency. We hypothesised that the uptake and release of ammonia by rumen bacteria will affect the natural 15N enrichment of the bacterial biomass over their substrates (Δ15Nbacteria-substrate) and thereby further impacting Δ15Nanimal-diet.

View Article and Find Full Text PDF

Background: Host-associated microbes are major determinants of the host phenotypes. In the present study, we used dairy cows with different scores of susceptibility to mastitis with the aim to explore the relationships between microbiota composition and different factors in various body sites throughout lactation as well as the intra- and inter-animal microbial sharing.

Results: Microbiotas from the mouth, nose, vagina and milk of 45 lactating dairy cows were characterized by metataxonomics at four time points during the first lactation, from 1-week pre-partum to 7 months post-partum.

View Article and Find Full Text PDF

The production of enteric methane in the gastrointestinal tract of livestock is considered as an energy loss in the equations for estimating energy metabolism in feeding systems. Therefore, the spared energy resulting from specific inhibition of methane emissions should be re-equilibrated with other factors of the equation. And, it is commonly assumed that net energy from feeds increases, thus benefitting production functions, particularly in ruminants due to the important production of methane in the rumen.

View Article and Find Full Text PDF

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants.

View Article and Find Full Text PDF

Most mitigation strategies to reduce enteric methane (CH) production in the rumen induce an excess of rumen dihydrogen (H) that is expelled and consequently not redirected to the synthesis of metabolites that can be utilised by the ruminant. We hypothesised that phenolic compounds can be potential H acceptors when added to the diet, as they can be degraded to compounds that may be beneficial for the animal, using part of the H available when ruminal methanogenesis is inhibited. We performed four in vitro incubation experiments using rumen inoculum from Murciano-Granadina adult goats: Experiment 1 examined the inhibitory potential of Asparagopsis taxiformis (AT) at different concentrations (0, 1, 2, 3, 4 and 5% of the substrate on a DM basis) in 24 h incubations; Experiment 2 investigated the effect of a wide range of phenolic compounds (phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, gallic acid and formic acid) at different doses (0, 2, 4, and 6 mM) on rumen fermentation for 24 h; Experiment 3 evaluated the combined effect of each phenolic compound at 6 mM with AT at 2% DM in sequential batch cultures for 5 days; and Experiment 4 examined the dose-response effect of phloroglucinol at different concentrations (0, 6, 16, 26 and 36 mM) combined with AT in sequential batch cultures for 5 days.

View Article and Find Full Text PDF

Some antimethanogenic feed additives for ruminants promote rumen dihydrogen (H) accumulation potentially affecting the optimal fermentation of diets. We hypothesised that combining an H acceptor with a methanogenesis inhibitor can decrease rumen H build-up and improve the production of metabolites that can be useful for the host ruminant. We performed three in vitro incubation experiments using rumen fluid from lactating Holstein cows: Experiment 1 examined the effect of phenolic compounds (phenol, catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, and gallic acid) at 0, 2, 4, and 6 mM on ruminal fermentation for 24 h; Experiment 2 examined the combined effect of each phenolic compound from Experiment 1 at 6 mM with two different methanogenesis inhibitors (Asparagopsis taxiformis or 2-bromoethanesulfonate (BES)) for 24 h incubation; Experiment 3 examined the effect of a selected phenolic compound, phloroglucinol, with or without BES over a longer term using sequential incubations for seven days.

View Article and Find Full Text PDF

The Open Science movement aims at ensuring accessibility, reproducibility, and transparency of research. The adoption of Open Science practices in animal science, however, is still at an early stage. To move ahead as a field, we here provide seven practical steps to embrace Open Science in animal science.

View Article and Find Full Text PDF

The experiment reported in this research paper aimed to evaluate the effects of high-starch or starch and oil-supplemented diets on rumen and faecal bacteria, and explore links between the structure of bacterial communities and milk fatty acid (FA) profiles. We used four Holstein dairy cows in a 4 × 4 Latin square design. Cows were fed a diet rich in cereals (high-starch diet with 23% starch content on dry matter (DM) basis), a diet supplemented with saturated FA from Ca salts of palm oil + 18% DM starch, a diet with high content of monounsaturated FA (from extruded rapeseeds) + 18% DM starch or a diet rich in polyunsaturated FA (from extruded sunflower seeds) + 17% DM starch.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how condensed tannins in tropical plants affect rumen degradation and microbial colonization, focusing on both free and bound fractions through experiments with dairy cows and lab techniques.
  • - Plants tested, including Calliandra calothyrsus and Acacia nilotica, contained high tannin levels, with significant portions bound to proteins; free tannins disappeared quickly, while the disappearance rate of protein-bound tannins varied widely among plants.
  • - Results showed that the presence of tannins impacted microbial colonization in the rumen, with unique bacterial and archaeal communities forming around different plant types during incubation.
View Article and Find Full Text PDF

The aim of this study was to characterize the effects of tannins on plant protein during sheep digestion using a digestomic approach combining (rumen) conditions and an digestive system (abomasum and small intestine). Ruminal fluid from wethers infused with a tannin solution or water (control) was introduced into the digester, and protein degradation was followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Tannin infusion in the rumen led to a clear decrease in protein degradation-related fermentation end-products, whereas ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) protein was more abundant than in control wethers.

View Article and Find Full Text PDF

Urine is a highly suitable biological matrix for metabolomics studies. Total collection for 24-h periods is the gold standard as it ensures the presence of all metabolites excreted throughout the day. However, in animal studies, it presents limitations related to animal welfare and also due to alterations of the metabolome originating from the use of acid for preventing microbial growth or microbial contamination.

View Article and Find Full Text PDF

Metabolome profiling in biological fluids is an interesting approach for exploring markers of methane emissions in ruminants. In this study, a multiplatform metabolomics approach was used for investigating changes in milk metabolic profiles related to methanogenesis in dairy cows. For this purpose, 25 primiparous Holstein cows at similar lactation stage were fed the same diet supplemented with (treated, n = 12) or without (control, n = 13) a specific antimethanogenic additive that reduced enteric methane production by 23% with no changes in intake, milk production, and health status.

View Article and Find Full Text PDF

Recent evidence suggests that changes in microbial colonization of the rumen prior to weaning may imprint the rumen microbiome and impact phenotypes later in life. We investigated how dietary manipulation from birth influences growth, methane production, and gastrointestinal microbial ecology. At birth, 18 female Holstein and Montbéliarde calves were randomly assigned to either treatment or control (CONT).

View Article and Find Full Text PDF

Background: Newborn ruminants possess an underdeveloped rumen which is colonized by microorganisms acquired from adult animals and the surrounding environment. This microbial transfer can be limited in dairy systems in which newborns are separated from their dams at birth. This study explores whether the direct inoculation of fresh or autoclaved rumen fluid from adult goats to newborn kids has a beneficial effect on rumen microbial development and function.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how reducing methane emissions in lactating cows affects their metabolism, which is crucial for acceptance of methane reduction practices by farmers.
  • Plasma samples from treated cows (with a methane-reducing feed additive) were analyzed and showed a 23% reduction in methane emissions without negatively impacting milk production or health indicators.
  • A total of 48 key metabolites were identified, some linked to microbial activity, indicating potential markers for methanogenesis, while others suggest a positive influence on the cows' amino acid and energy metabolism.
View Article and Find Full Text PDF

Mannoside phosphorylases are involved in the intracellular metabolization of mannooligosaccharides, and are also useful enzymes for the synthesis of oligosaccharides. They are found in glycoside hydrolase family GH130. Here we report on an analysis of 6308 GH130 sequences, including 4714 from the human, bovine, porcine and murine microbiomes.

View Article and Find Full Text PDF

Nitrogen (N) isotopic discrimination (i.e. the difference in natural 15N abundance between the animal proteins and the diet; Δ15N) is known to correlate with N use efficiency (NUE) and feed conversion efficiency (FCE) in ruminants.

View Article and Find Full Text PDF

Background: The rumen microbiota provides essential services to its host and, through its role in ruminant production, contributes to human nutrition and food security. A thorough knowledge of the genetic potential of rumen microbes will provide opportunities for improving the sustainability of ruminant production systems. The availability of gene reference catalogs from gut microbiomes has advanced the understanding of the role of the microbiota in health and disease in humans and other mammals.

View Article and Find Full Text PDF