The borosilylcyclopropanation of styrene derivatives using a (diiodo(trimethylsilyl)methyl)boronic ester carbene precursor is reported herein. The key reagent was synthesized in a 4-step sequence using inexpensive and commercially available starting materials. This method enabled the preparation of novel 1,1,2-tri- and 1,1,2,2-tetrasubstituted borosilylcyclopropanes up to excellent yields and diastereoselectivity.
View Article and Find Full Text PDFHerein we reported the electrochemical hydroboration of alkynes by using B Pin as the boron source. This unprecedented reaction manifold was applied to a broad range of alkynes, giving the hydroboration products in good to excellent yields without the need of a metal catalyst or a hydride source. This transformation relied on the possible electrochemical oxidation of an in situ formed borate.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2018
Herein, we report a user-friendly and metal-free UV-A light mediated borocyclopropanation of styrenes using continuous flow technology. A broad range of styrene derivatives can be cyclopropanated in good yields within 1 h residence time to produce highly valuable cyclopropylboronate esters with modest to good diastereoselectivities. The reaction is also applicable to α-substituted styrenes.
View Article and Find Full Text PDFAntimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase.
View Article and Find Full Text PDF