Publications by authors named "Morgane Rousselot"

Sibiriline is a novel drug inhibiting receptor-interacting protein 1 kinase (RIPK1) and necroptosis, a regulated form of cell death involved in several disease models. In this study, we aimed to investigate the metabolic fate of sibiriline in a cross-sectional manner using an in silico prediction, coupled with in vitro and in vivo experiments. In silico predictions were performed using GLORYx and Biotransformer 3.

View Article and Find Full Text PDF

Nigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways.

View Article and Find Full Text PDF

The purpose of this work is to investigate the protein kinase inhibitory activity of constituents from stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases.

View Article and Find Full Text PDF

Recombinant proteins, particularly proteins used as therapeutics, are widely expressed for bioprocessing manufacturing processes. Mammalian cell lines represent the major host cells for bioproduction, according to their capacities of post-translational modifications and folding of secreted proteins. Many parameters can affect cell productivity, especially the rate of oxygen transfer.

View Article and Find Full Text PDF

Natural giant extracellular hemoglobins (Hbs) from polychaete annelids are currently actively investigated as promising oxygen carriers. Their powerful oxygenating ability and their safety have been demonstrated in preclinical studies, motivating their development for therapeutic and industrial applications. HEMARINA-M101 (M101) is derived from the marine invertebrate Arenicola marina.

View Article and Find Full Text PDF

The intensity of ischemia-reperfusion injury of the donor organ during the preservation phase and after anastomosis is acknowledged as being a key factor for long-term graft outcome. We previously showed that the addition of 5 g/L of the natural oxygen carrier HEMO2 Life was beneficial for the cold static preservation of kidney grafts in both University of Wisconsin (UW) and histidine-tryptophan-ketoglutarate solutions. Herein, we refined these findings by evaluating HEMO2 Life at various dose levels in UW, both in vitro with endothelial cells and in vivo in a pig kidney autotransplantation preclinical model.

View Article and Find Full Text PDF

Extracellular soluble hemoglobins (Hbs) have long been studied for their possible use as safe and effective alternatives to blood transfusion. While remarkable progress has been made in the use of cell-free Hb as artificial oxygen carrier, significant problems remain, including susceptibility to oxidative inactivation and propensity to induce vasoconstriction. Hemarina-M101 is a natural giant extracellular hemoglobin (3600 kDa) derived from marine invertebrate (polychaete annelid).

View Article and Find Full Text PDF

This work reports for the first time the expression of a soluble B2 globin chain that is part of the extracellular hexagonal-bilayer haemoglobin from Arenicola marina. Two recombinant B2 globins were produced, one fused with gluthatione S-tranferase (B2-GST) and the other without a fusion tag (RecB2) and requiring a different purification procedure. We also describe a new method for the expression of globin that uses Studier's auto-induction medium together with the heme precursor delta-aminolevulinic acid.

View Article and Find Full Text PDF

Understanding the function of macromolecular complexes is related to a precise knowledge of their structure. These large complexes are often fragile high molecular mass noncovalent multimeric proteins. Classical biochemical methods for determination of their native mass and subunit composition were used to resolve their quaternary structure, sometimes leading to different models.

View Article and Find Full Text PDF

Many branchiopod crustaceans are endowed with extracellular, high-molecular-weight hemoglobins whose exact structural characteristics have remained a matter of conjecture. By using a broad spectrum of techniques, we provide precise and coherent information on the hemoglobin of one of the phylogenetically 'oldest' extant branchiopods, the tadpole shrimp Triops cancriformis. The hemoglobin dissociated under reducing conditions into two subunits, designated TcHbA and TcHbB, with masses of 35,775+/-4 and 36,055+/-4 Da, respectively, determined by ESI-MS.

View Article and Find Full Text PDF

The need to develop a blood substitute is now urgent because of the increasing concern over Europe's BSE outbreak and the worldwide HIV/AIDS epidemic, which have cut blood supplies. Extracellular soluble hemoglobin has long been studied for its possible use as a safe and effective alternative to blood transfusion, but this has met with little success. Clinical trials have revealed undesirable side effects-oxidative damage and vasoconstriction-that hamper the application of cell-free hemoglobin as a blood substitute.

View Article and Find Full Text PDF

The molecular masses of macromolecules and subunits of the extracellular hemoglobin from the fresh-water crustacean Daphnia magna were determined by analytical ultracentrifugation, multiangle laser light scattering and electrospray ionization mass spectrometry. The hemoglobins from hypoxia-incubated, hemoglobin-rich and normoxia-incubated, hemoglobin-poor Daphnia magna were analyzed separately. The sedimentation coefficient of the macromolecule was 17.

View Article and Find Full Text PDF

Giant extracellular hexagonal bilayer hemoglobin (HBL-Hb), found only in annelids, is an approximately 3500-kDa heteropolymeric structure involved in oxygen transport. The HBL-Hbs are comprised of globin and linker chains, the latter being required for the assembly of the quaternary structure. The linker chains, varying in size from 225 to 283 amino acids, have a conserved cysteine-rich domain within their N-terminal moiety that is homologous to the cysteine-rich modules constituting the ligand binding domain of the low-density lipoprotein receptor (LDLR) protein family found in many metazoans.

View Article and Find Full Text PDF

The extracellular hemoglobin of the lugworm Arenicola marina which inhabits on the intertidal area, a sulfide-rich environment, comprises eight globin chains previously determined by mass spectrometry. We have cloned and sequenced five of the globin components. The deduced amino-acid sequences exhibit an extracellular signal peptide and two cysteine residues involved in an internal disulfide bond.

View Article and Find Full Text PDF

The extracellular haemoglobin of the marine polychaete, Arenicola marina, is a hexagonal bilayer haemoglobin of approximately 3600 kDa, formed by the covalent and noncovalent association of many copies of both globin subunits (monomer and trimer) and nonglobin or 'linker' subunits. In order to analyse the interactions between globin and linker subunits, dissociation and reassociation experiments were carried out under whereby Arenicola hexagonal bilayer haemoglobin was exposed to urea and alkaline pH and the effect was followed by gel filtration, SDS/PAGE, UV-visible spectrophotometry, electrospray-ionization MS, multiangle laser light scattering and transmission electron microscopy. The analysis of Arenicola haemoglobin dissociation indicates a novel and complex mechanism of dissociation compared with other annelid extracellular haemoglobins studied to date.

View Article and Find Full Text PDF