Publications by authors named "Morgane Placet"

The elevated expression of the splicing regulator SRSF10 in metastatic colorectal cancer (CRC) stimulates the production of the pro-tumorigenic splice variant. We discovered a group of small molecules with an aminothiazole carboxamide core (GPS167, GPS192 and others) that decrease production of . While additional alternative splicing events regulated by SRSF10 are affected by GPS167/192 in HCT116 cells (e.

View Article and Find Full Text PDF

In the intestine, mucins are expressed and secreted by goblet cells and enterocytes in a constitutive manner and in response to secretagogues to form a protective mucus layer. This protective barrier is often lost in inflammatory bowel disease (IBD). Interestingly, extracellular nucleotides, through P2Y receptors, were identified as mucin secretagogues in mucinous epithelia.

View Article and Find Full Text PDF

Cell migration is a ubiquitous process necessary to maintain and restore tissue functions. However, in cancer, cell migration leads to metastasis development and thus worsens the prognosis. Although the mechanism of cell migration is well understood, the identification of new targets modulating cell migration and deciphering their signaling events could lead to new therapies to restore tissue functions in diseases, such as inflammatory bowel disease, or to block metastatic development in different forms of cancer.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a risk factor for the development of colorectal cancer (CRC) for which mutation to p53 is an early event leading to dysplasia. Interestingly, P2RY6 mRNA increases in both pathologies. In this study, we investigated if p53 and p53 mutant, commonly found in CRC and IBD, were involved in the transcriptional regulation of P2RY6.

View Article and Find Full Text PDF

Colorectal tumors are immersed in an array of tumor-promoting factors including extracellular nucleotides such as uridine 5'‑diphosphate (UDP). UDP is the endogenous agonist of the G protein-coupled P2Y receptor (P2YR), which may contribute to the formation of a tumor-promoting microenvironment by coordinating resistance to apoptosis. Colorectal cancer (CRC) was chemically induced in P2ry6 knockout (P2ry6) mice using azoxymethane and dextran sulfate sodium challenges.

View Article and Find Full Text PDF

In intestinal epithelial cells (IEC), it was reported that the activation of the P2X7 receptor leads to the internalization of the glucose transporter GLUT2, which is accompanied by a reduction of IEC capacity to transport glucose. In this study, we used P2rx7 mice to decipher P2X7 functions in intestinal glucose transport and to evaluate the impacts on metabolism. Immunohistochemistry analyses revealed the presence of GLUT2 at the apical domain of P2rx7 jejunum enterocytes.

View Article and Find Full Text PDF

Purinergic signaling has recently emerged as a network of signaling molecules, enzymes and receptors that coordinates the action and behavior of cancerous cells. Extracellular adenosine 5' triphosphate activates a plethora of P2 nucleotide receptors that can putatively modulate cancer cell proliferation, survival and dissemination. In this context, the G protein-coupled P2Y receptor was identified as one of the entities coordinating the cellular and molecular events that characterize cancerous cells.

View Article and Find Full Text PDF

Extracellular adenosine 5'-triphosphate (ATP) is a signaling molecule that induces a plethora of effects ranging from the regulation of cell proliferation to modulation of cancerous cell behavior. In colorectal cancer, ATP was reported to stimulate epithelial cell proliferation and possibly promote resistance to anti-cancer treatments. However, the exact role of this danger-signaling molecule on cancerous intestinal epithelial cells (IECs) in response to chemotherapeutic agents remains unknown.

View Article and Find Full Text PDF

Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development.

View Article and Find Full Text PDF