Publications by authors named "Morgane Perrotte"

Background: Growing evidence supports that receptor for advanced glycation end products (RAGE) and glyoxalase-1 (GLO-1) are implicated in the pathophysiology of Alzheimer's disease (AD). Extracellular vesicles (EVs) are nanovesicles secreted by almost all cell types, contribute to cellular communication, and are implicated in AD pathology. Recently, EVs are considered as promising tools to identify reliable biomarkers in AD.

View Article and Find Full Text PDF

Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs.

View Article and Find Full Text PDF

Unhealthy dietary habits can play a crucial role in metabolic damages, promoting alteration of neural functions through the lifespan. Recently, dietary change has been perceived as the first line intervention in prevention and/or treatment of metabolic damages and related diseases. In this context, our study was designed to assess the eventual therapeutic effect of date seeds administration on memory and learning and on neuronal markers in a rat Metabolic Syndrome model.

View Article and Find Full Text PDF

Accumulating evidence suggests that the propagation of hyperphosphorylation of tau protein and the amyloid-β peptide can be mediated by extracellular vesicles (EVs) and be associated with the onset and the progression of Alzheimer's disease (AD). As EVs may transfer between the brain and the blood, we have thus hypothesized that the total plasma EVs (pEVs) may contain potential markers to predict the mild cognitive impairment (MCI) and AD progression. We have thus quantified AD-related proteins in isolated pEVs from controls, MCI and AD subjects.

View Article and Find Full Text PDF

Methylglyoxal (MG) and glyoxal (GO) are suggested to be associated with the development of neurodegenerative pathologies. However, their peripheral levels in relation to cognitive decline and their effects on key factors in neuronal cells are poorly investigated. The aim of this study was to determine their serum levels in MCI (mild cognitive impairment) and Alzheimer's disease (AD) patients, to analyze their effects on the neurotrophic and inflammatory factors, on neurodegenerative markers in neuronal cells and in neuronal derived-extracellular vesicles (nEVs).

View Article and Find Full Text PDF

Background: Both advanced glycation end products (AGEs) N-(1-carboxymethyl)-L-lysine (CML) and pentosidine were found in the brain from Alzheimer's disease (AD) patients and were associated with the neuropathological hallmarks of AD. In AD patients, the circulating level of both AGEs remains unknown. Moreover, their levels in peripheral extracellular vesicles (EVs) and their association with AD remain to be determined.

View Article and Find Full Text PDF

Oxidative stress plays a pivotal and early role in the pathophysiology of Alzheimer's disease (AD). There is convincing evidence that oxidative alterations in AD and in mild cognitive impairment (MCI) patients are not limited to the brain but are extended to the blood compartment. However, the oxidative pattern in plasma is still inconclusive.

View Article and Find Full Text PDF

Scope: The aim of the present study was to examine the neuroprotective effect of curcumin against the toxicity induced by acrolein and to identify its cellular mechanisms and targets.

Methods And Results: Human neuroblastoma cells SK-N-SH were treated with acrolein. Curcumin, from 5 μM, was able to protect SK-N-SH cells against acrolein toxicity.

View Article and Find Full Text PDF