Publications by authors named "Morgane M Roth"

Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear.

View Article and Find Full Text PDF

Context guides perception by influencing stimulus saliency. Accordingly, in visual cortex, responses to a stimulus are modulated by context, the visual scene surrounding the stimulus. Responses are suppressed when stimulus and surround are similar but not when they differ.

View Article and Find Full Text PDF

Animals sense the environment through pathways that link sensory organs to the brain. In the visual system, these feedforward pathways define the classical feedforward receptive field (ffRF), the area in space in which visual stimuli excite a neuron. The visual system also uses visual context-the visual scene surrounding a stimulus-to predict the content of the stimulus, and accordingly, neurons have been identified that are excited by stimuli outside their ffRF.

View Article and Find Full Text PDF

Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1.

View Article and Find Full Text PDF

Sensory perception depends on the context in which a stimulus occurs. Prevailing models emphasize cortical feedback as the source of contextual modulation. However, higher order thalamic nuclei, such as the pulvinar, interconnect with many cortical and subcortical areas, suggesting a role for the thalamus in providing sensory and behavioral context.

View Article and Find Full Text PDF

Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning.

View Article and Find Full Text PDF

One of the hallmarks of neocortical circuits is the predominance of recurrent excitation between pyramidal neurons, which is balanced by recurrent inhibition from smooth GABAergic neurons. It has been previously described that in layer 2/3 of primary visual cortex (V1) of cat and monkey, pyramidal cells filled with horseradish peroxidase connect approximately in proportion to the spiny (excitatory, 95% and 81%, respectively) and smooth (GABAergic, 5% and 19%, respectively) dendrites found in the neuropil. By contrast, a recent ultrastructural study of V1 in a single mouse found that smooth neurons formed 51% of the targets of the superficial layer pyramidal cells.

View Article and Find Full Text PDF

Visual input provides important landmarks for navigating in the environment, information that in mammals is processed by specialized areas in the visual cortex. In rodents, the posteromedial area (PM) mediates visual information between primary visual cortex (V1) and the retrosplenial cortex, which further projects to the hippocampus. To understand the functional role of area PM requires a detailed analysis of its spatial frequency (SF) and temporal frequency (TF) tuning.

View Article and Find Full Text PDF

How are visual scenes encoded in local neural networks of visual cortex? In rodents, visual cortex lacks a columnar organization so that processing of diverse features from a spot in visual space could be performed locally by populations of neighboring neurons. To examine how complex visual scenes are represented by local microcircuits in mouse visual cortex we measured visually evoked responses of layer 2/3 neuronal populations using 3D two-photon calcium imaging. Both natural and artificial movie scenes (10 seconds duration) evoked distributed and sparsely organized responses in local populations of 70-150 neurons within the sampled volumes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionac4ii5gkgmmun7urrnvk0r4bi37e0d2i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once