Publications by authors named "Morgane Bourcy"

Epithelial-mesenchymal transitions (EMTs) are high-profile in the field of circulating tumor cells (CTCs). EMT-shifted CTCs are considered to encompass pre-metastatic subpopulations though underlying molecular mechanisms remain elusive. Our previous work identified tissue factor (TF) as an EMT-induced gene providing tumor cells with coagulant properties and supporting metastatic colonization by CTCs.

View Article and Find Full Text PDF

Flow cytometry assessment of platelets using the combination of GSAO [4-(N-(S-glutathionylacetyl)amino)phenylarsonous acid], a dithiol-reactive probe, and P-selectin, a platelet activation marker, is a novel and powerful assay in the identification and quantification of the procoagulant subpopulation of platelets that has the capacity to support thrombin generation. In this chapter, we provide the flow cytometry protocols aimed at the study of procoagulant platelets under resting and agonist-stimulated conditions in whole blood and washed platelets of both human and murine (mouse) samples.

View Article and Find Full Text PDF

Epithelial-mesenchymal transitions (EMTs) associated with metastatic progression may contribute to the generation of hybrid phenotypes capable of plasticity. This cellular plasticity would provide tumor cells with an increased potential to adapt to the different microenvironments encountered during metastatic spread. Understanding how EMT may functionally equip circulating tumor cells (CTCs) with an enhanced competence to survive in the bloodstream and niche in the colonized organs has thus become a major cancer research axis.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is prominent in circulating tumor cells (CTC), but how it influences metastatic spread in this setting is obscure. Insofar as blood provides a specific microenvironment for tumor cells, we explored a potential link between EMT and coagulation that may provide EMT-positive CTCs with enhanced colonizing properties. Here we report that EMT induces tissue factor (TF), a major cell-associated initiator of coagulation and related procoagulant properties in the blood.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) programmes provide cancer cells with invasive and survival capacities that might favour metastatic dissemination. Whilst signalling cascades triggering EMT have been extensively studied, the impact of EMT on the crosstalk between tumour cells and the tumour microenvironment remains elusive. We aimed to identify EMT-regulated soluble factors that facilitate the recruitment of host cells in the tumour.

View Article and Find Full Text PDF