Publications by authors named "Morgan-Warren R"

Objective: The aim was to evaluate the efficacy of Optive Plus(®), an artificial tear containing castor oil, in patients with dry eye, in a routine clinical setting.

Methods: This was a prospective, noninterventional study of patients with dry eye who switched from a prior therapy or who were naïve to treatment (n=1,209). Patients were issued Optive Plus(®) artificial tears.

View Article and Find Full Text PDF

Objective: To compare a fixed combination of 0.03% bimatoprost and 0.5% timolol (BTFC) with latanoprost monotherapy (LM) in treatment-naïve patients with open-angle glaucoma (OAG) and risk factors for glaucomatous progression.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the safety and efficacy of a fixed combination of bimatoprost 0.03% and timolol (BTFC) in a clinical setting, in a large sample of patients with primary open-angle glaucoma or ocular hypertension and insufficient intraocular pressure (IOP) lowering on prior therapy.

Methods: Patient data were combined (n = 5556) from five multicenter, observational, non-controlled, open-label studies throughout Europe.

View Article and Find Full Text PDF

The distribution of prion infectivity and PrPSc between peripheral lymphoid tissues suggests their possible haematogenic spread during the progression of natural scrapie in susceptible sheep. Since ovine PBMCs (peripheral blood mononuclear cells) express PrPC, they have the potential to carry or harbour disease-associated forms of PrP. To detect the possible presence of disease-associated PrP on the surface of blood cells, an understanding is required of the conformations that normal ovine cell-surface PrPC may adopt.

View Article and Find Full Text PDF

Prion-related protein (PrP) is a glycosylphosphatidylinositol-linked cell-surface protein expressed by a wide variety of cells, including those of the nervous system and the immune system. Several functions of normal cellular PrP (PrPc) have been proposed that may be associated with the capacity of this protein to bind copper. In the present study, we describe the generation of a panel of monoclonal antibodies raised to copper-refolded PrP, which may be used to analyse the normal and disease-associated forms of this protein.

View Article and Find Full Text PDF

We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 A resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 A resolution.

View Article and Find Full Text PDF

Initiation of translation at the correct position on messenger RNA is essential for accurate protein synthesis. In prokaryotes, this process requires three initiation factors: IF1, IF2, and IF3. Here we report the crystal structure of a complex of IF1 and the 30S ribosomal subunit.

View Article and Find Full Text PDF

We have used the recently determined atomic structure of the 30S ribosomal subunit to determine the structures of its complexes with the antibiotics tetracycline, pactamycin, and hygromycin B. The antibiotics bind to discrete sites on the 30S subunit in a manner consistent with much but not all biochemical data. For each of these antibiotics, interactions with the 30S subunit suggest a mechanism for its effects on ribosome function.

View Article and Find Full Text PDF

The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation.

View Article and Find Full Text PDF

Genetic information encoded in messenger RNA is translated into protein by the ribosome, which is a large nucleoprotein complex comprising two subunits, denoted 30S and 50S in bacteria. Here we report the crystal structure of the 30S subunit from Thermus thermophilus, refined to 3 A resolution. The final atomic model rationalizes over four decades of biochemical data on the ribosome, and provides a wealth of information about RNA and protein structure, protein-RNA interactions and ribosome assembly.

View Article and Find Full Text PDF