Climatic warming can shift community composition driven by the colonization-extinction dynamics of species with different thermal preferences; but simultaneously, habitat fragmentation can mediate species' responses to warming. As this potential interactive effect has proven difficult to test empirically, we collected data on birds over 10 years of climate warming in a reservoir subtropical island system that was formed 65 years ago. We investigated how the mechanisms underlying climate-driven directional change in community composition were mediated by habitat fragmentation.
View Article and Find Full Text PDFClimate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site-specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El-Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations.
View Article and Find Full Text PDFTerrestrial species can respond to a warming climate in multiple ways, including shifting in space (via latitude or elevation) and time (via phenology). Evidence for such shifts is often assessed independent of other temperature-tracking mechanisms; critically, no study has compared shifts across all three spatiotemporal dimensions. Here we used two continental-scale monitoring databases to estimate trends in the breeding latitude (311 species), elevation (251 species) and phenology (111 species) of North American landbirds over 27 years, with a shared pool of 102 species.
View Article and Find Full Text PDFIn response to biodiversity loss and biotic community homogenization in urbanized landscapes, there are increasing efforts to conserve and increase biodiversity within urban areas. Accordingly, around the world, previously extirpated species are (re)colonizing and otherwise infiltrating urban landscapes, while other species are disappearing from these landscapes. Tracking the occurrence of traditionally urban intolerant species and loss of traditionally urban tolerant species should be a management goal of urban areas, but we generally lack tools to study this phenomenon.
View Article and Find Full Text PDFCorrelative species distribution models are widely used to quantify past shifts in ranges or communities, and to predict future outcomes under ongoing global change. Practitioners confront a wide range of potentially plausible models for ecological dynamics, but most specific applications only consider a narrow set. Here, we clarify that certain model structures can embed restrictive assumptions about key sources of forecast uncertainty into an analysis.
View Article and Find Full Text PDFChanges in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive.
View Article and Find Full Text PDFHabitat fragmentation and climate change are two of the greatest threats to biodiversity, yet their combined impacts and potential interactions are poorly understood, particularly in the context of demographic rates. The Usambara Mountains, Tanzania, comprise a highly fragmented landscape where temperatures have increased by 0.58 °C over the last three decades.
View Article and Find Full Text PDFAs human density increases, biodiversity must increasingly co-exist with urbanization or face local extinction. Tolerance of urban areas has been linked to numerous functional traits, yet few globally consistent patterns have emerged to explain variation in urban tolerance, which stymies attempts at a generalizable predictive framework. Here, we calculate an Urban Association Index (UAI) for 3,768 bird species in 137 cities across all permanently inhabited continents.
View Article and Find Full Text PDFSpatial and temporal variation in fire characteristics-termed pyrodiversity-are increasingly recognized as important factors that structure wildlife communities in fire-prone ecosystems, yet there have been few attempts to incorporate pyrodiversity or post-fire habitat dynamics into predictive models of animal distributions and abundance to support post-fire management. We use the black-backed woodpecker-a species associated with burned forests-as a case study to demonstrate a pathway for incorporating pyrodiversity into wildlife habitat assessments for adaptive management. Employing monitoring data (2009-2019) from post-fire forests in California, we developed three competing occupancy models describing different hypotheses for habitat associations: (1) a static model representing an existing management tool, (2) a temporal model accounting for years since fire, and (3) a temporal-landscape model which additionally incorporates emerging evidence from field studies about the influence of pyrodiversity.
View Article and Find Full Text PDFIn conifer forests of western North America, wildlife populations can change rapidly in the decade following wildfire as trees die and animals respond to concomitant resource pulses that occur across multiple trophic levels. In particular, black-backed woodpeckers (Picoides arcticus) show predictable temporal increases then declines following fire; this trajectory is widely believed to be a response to the woodpeckers' main prey, woodboring beetle larvae of the families Buprestidae and Cerambycidae, but we lack understanding of how abundances of these predators and prey may be associated in time or space. Here, we pair woodpecker surveys over 10 years with surveys of woodboring beetle sign and activity, collected at 128 survey plots across 22 recent fires, to ask whether accumulated beetle sign indicates current or past black-backed woodpecker occurrence, and whether that relationship is mediated by the number of years since fire.
View Article and Find Full Text PDFReports of declines in abundance and biomass of insects and other invertebrates from around the world have raised concerns about food limitation that could have profound impacts for insectivorous species. Food availability can clearly affect species; however, there is considerable variation among studies in whether this effect is evident, and thus a lack of clarity over the generality of the relationship. To understand how decreased food availability due to invertebrate declines will affect bird populations, we conducted a systematic review and used meta-analytic structural equation modelling, which allowed us to treat our core variables of interest as latent variables estimated by the diverse ways in which researchers measure fecundity and chick body condition.
View Article and Find Full Text PDFRare birds known as "accidentals" or "vagrants" have long captivated birdwatchers and puzzled biologists, but the drivers of these rare occurrences remain elusive. Errors in orientation or navigation are considered one potential driver: migratory birds use the Earth's magnetic field-sensed using specialized magnetoreceptor structures-to traverse long distances over often unfamiliar terrain. Disruption to these magnetoreceptors or to the magnetic field itself could potentially cause errors leading to vagrancy.
View Article and Find Full Text PDFQuantifying environment-morphology relationships is important not only for understanding the fundamental processes driving phenotypic diversity within and among species but also for predicting how species will respond to ongoing global change. Despite a clear set of expectations motivated by ecological theory, broad evidence in support of generalizable effects of abiotic conditions on spatial and temporal intraspecific morphological variation has been limited. Using standardized data from >250,000 captures of 105 landbird species, we assessed intraspecific shifts in the morphology of adult male birds since 1989 while simultaneously measuring spatial morphological gradients across the North American continent.
View Article and Find Full Text PDFAdvances in spring migratory phenology comprise some of the most well-documented evidence for the impacts of climate change on birds. Nevertheless, surprisingly little research has investigated whether birds are shifting their migratory phenology equally across sex and age classes-a question critical to understanding the potential for trophic mismatch. We used 60 years of bird banding data across North America-comprising over 4 million captures in total-to investigate both spring and fall migratory phenology for a total of 98 bird species across sex and age classes, with the exact numbers of species for each analysis depending on season-specific data availability.
View Article and Find Full Text PDFSpecies' response to rapid climate change can be measured through shifts in timing of recurring biological events, known as phenology. The Gulf of Maine is one of the most rapidly warming regions of the ocean, and thus an ideal system to study phenological and biological responses to climate change. A better understanding of climate-induced changes in phenology is needed to effectively and adaptively manage human-wildlife conflicts.
View Article and Find Full Text PDFMany species have not tracked their thermal niches upslope as predicted by climate change, potentially because higher elevations are associated with abiotic challenges beyond temperature. To better predict whether organisms can continue to move upslope with rising temperatures, we need to understand their physiological performance when subjected to novel high-elevation conditions. Here, we captured Anna's hummingbirds - a species expanding their elevational distribution in concordance with rising temperatures - from across their current elevational distribution and tested their physiological response to novel abiotic conditions.
View Article and Find Full Text PDFHabitat loss disrupts species interactions through local extinctions, potentially orphaning species that depend on interacting partners, via mutualisms or commensalisms, and increasing secondary extinction risk. Orphaned species may become functionally or secondarily extinct, increasing the severity of the current biodiversity crisis. While habitat destruction is a major cause of biodiversity loss, the number of secondary extinctions is largely unknown.
View Article and Find Full Text PDFWidespread woody encroachment is a prominent concern for savanna systems as it is often accompanied by losses in productivity and biodiversity. Extensive ecosystem-level work has advanced our understanding of its causes and consequences. However, there is still debate over whether local management can override regional and global drivers of woody encroachment, and it remains largely unknown how encroachment influences woody community assemblages.
View Article and Find Full Text PDFAnimals and plants are shifting the timing of key life events in response to climate change, yet despite recent documentation of escalating phenological change, scientists lack a full understanding of how and why phenological responses vary across space and among species. Here, we used over 7 million community-contributed bird observations to derive species-specific, spatially explicit estimates of annual spring migration phenology for 56 bird species across eastern North America. We show that changes in the spring arrival of migratory birds are coarsely synchronized with fluctuations in vegetation green-up and that the sensitivity of birds to plant phenology varied extensively.
View Article and Find Full Text PDFPyrodiversity, defined as variation in fire history and characteristics, has been shown to catalyse post-fire biodiversity in a variety of systems. However, the demographic and behavioural mechanisms driving the responses of individual species to pyrodiversity remain largely unexplored. We used a model post-fire specialist, the black-backed woodpecker (Picoides arcticus), to examine the relationship between fire characteristics and juvenile survival while controlling for confounding factors.
View Article and Find Full Text PDFPhenotypic plasticity plays a critical role in adaptation to novel environments. Behavioural plasticity enables more rapid responses to unfamiliar conditions than evolution by natural selection. Urban ecosystems are one such novel environment in which behavioural plasticity has been documented.
View Article and Find Full Text PDFFire has been a source of global biodiversity for millions of years. However, interactions with anthropogenic drivers such as climate change, land use, and invasive species are changing the nature of fire activity and its impacts. We review how such changes are threatening species with extinction and transforming terrestrial ecosystems.
View Article and Find Full Text PDFIncorporating imperfect detection when estimating species richness has become commonplace in the past decade. However, the question of how imperfect detection of species affects estimates of functional and phylogenetic community structure remains untested. We used long-term counts of breeding bird species that were detected at least once on islands in a land-bridge island system, and employed multi-species occupancy models to assess the effects of imperfect detection of species on estimates of bird diversity and community structure by incorporating species traits and phylogenies.
View Article and Find Full Text PDF