Publications by authors named "Morgan V DiLeo"

Coronary artery disease leads to over 360,000 deaths annually in the United States, and off-the-shelf bypass graft options are currently limited and/or have high failure rates. Tissue-engineered vascular grafts (TEVGs) present an attractive option, though the promising mesenchymal stem cell (MSC)-based implants face uncertain regulatory pathways. In this study, "artificial MSCs" (ArtMSCs) were fabricated by encapsulating MSC-conditioned media (CM) in poly(lactic-co-glycolic acid) microparticles.

View Article and Find Full Text PDF

Controlled release or controlled drug delivery comprises the set of techniques and approaches to improve bioavailability through improved safety and/or efficacy using a carrier material for the molecule of interest. The predictability and tunability of these carriers make them ideal for protection, localization, and sustained presentation of a wide range of therapeutics, including growth factors implicated in cell survival and regeneration. Here we provide a method for encapsulating epidermal growth factor in a degradable polymer matrix for delivery to the cornea.

View Article and Find Full Text PDF

The objective of the investigation was to determine the ocular biodistribution of cysteamine, a reducing agent used for treatment of cystine crystals in cystinosis, following topical administration of a sustained release formulation and traditional eyedrop formulation. To the right eye only, rabbits received a 50 µL drop of 0.44% cysteamine eyedrops at one drop per waking hour for 2, 6, 12, and 24 h.

View Article and Find Full Text PDF

Intravitreal injection has become a popular treatment for various retina disorders and dramatically increased over the past few years. In traditional preintravitreal injection, the preparation steps are time consuming for practitioners who perform a significant number of injections per day. Besides, lidocaine gel (L-Gel) shows a potential absorption barrier on the antibacterial effect of povidone iodine (PI).

View Article and Find Full Text PDF

Cardiovascular disease is the leading cause of death worldwide, often associated with coronary artery occlusion. A common intervention for arterial blockage utilizes a vascular graft to bypass the diseased artery and restore downstream blood flow; however, current clinical options exhibit high long-term failure rates. Our goal was to develop an off-the-shelf tissue-engineered vascular graft capable of delivering a biological payload based on the monocyte recruitment factor C-C motif chemokine ligand 2 (CCL2) to induce remodeling.

View Article and Find Full Text PDF

The effect of extracorporeal blood purification on clinical outcomes in sepsis is assumed to be related to modulation of plasma cytokine concentrations. To test this hypothesis directly, we treated rats that had a cecal ligation followed by puncture (a standard model of sepsis) with a modest dose of extracorporeal blood purification that did not result in acute changes in a panel of common cytokines associated with inflammation (TNF-α, IL-1β, IL-6, and IL-10). Pre- and immediate post-treatment levels of these cytokines were unchanged compared to the sham therapy of extracorporeal circulation without blood purifying sorbent.

View Article and Find Full Text PDF

Sepsis is a harmful hyper-inflammatory state characterized by overproduction of cytokines. Removal of these cytokines using an extracorporeal device is a potential therapy for sepsis. We are developing a cytokine adsorption device (CAD) filled with porous polymer beads which efficiently depletes middle-molecular weight cytokines from a circulating solution.

View Article and Find Full Text PDF

Sepsis, a systemic inflammatory response in the presence of an infection, is characterized by overproduction of inflammatory mediators called cytokines. Removal of these cytokines using an extracorporeal hemoadsorption device is a potential therapy for sepsis. We are developing a cytokine adsorption device (CAD) filled with microporous polymer beads and have previously published a mathematical model which predicts the time course of cytokine removal by the device.

View Article and Find Full Text PDF

Sepsis is a systemic response to infection characterized by increased production of inflammatory mediators including cytokines. Increased production of cytokines such as interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor (TNF) can have deleterious effects. Removal of cytokines via adsorption onto porous polymer substrates using an extracorporeal device may be a potential therapy for sepsis.

View Article and Find Full Text PDF