The selective introduction of amine groups within deconstruction products of lignin could provide an avenue for valorizing waste biomass while achieving a green synthesis of industrially relevant building blocks from sustainable sources. Here, we built and characterized enzyme cascades that create aldehydes and subsequently primary amines from diverse lignin-derived carboxylic acids using a carboxylic acid reductase (CAR) and an ω-transaminase (TA). Unlike previous studies that have paired CAR and TA enzymes, here we examine multiple homologs of each of these enzymes and a broader set of candidate substrates.
View Article and Find Full Text PDFThe field of metabolic engineering has achieved biochemical routes for conversion of renewable inputs to structurally diverse chemicals, but these products contain a limited number of chemical functional groups. In this review, we provide an overview of the progression of uncommon or 'nonstandard' functional groups from the elucidation of their biosynthetic machinery to the pathway optimization framework of metabolic engineering. We highlight exemplary efforts from primarily the last 5 years for biosynthesis of aldehyde, ester, terminal alkyne, terminal alkene, fluoro, epoxide, nitro, nitroso, nitrile, and hydrazine functional groups.
View Article and Find Full Text PDF