Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes.
View Article and Find Full Text PDFGlobal warming is caused by human activity, such as the burning of fossil fuels, which produces high levels of greenhouse gasses. As a consequence, climate change impacts all organisms and the greater ecosystem through changing conditions from weather patterns to the temperature, pH and salt concentrations found in waterways and soil. These environmental changes fundamentally alter many parameters of the living world, from the kinetics of chemical reactions and cellular signaling pathways to the accumulation of unforeseen chemicals in the environment, the appearance and dispersal of new diseases, and the availability of traditional foods.
View Article and Find Full Text PDFBioinformatic analysis of the Delta SARS-CoV-2 genome reveals a single nucleotide mutation (G15U) in the stem-loop II motif (s2m) relative to ancestral SARS-CoV-2. Despite sequence similarity, unexpected differences between SARS-CoV-2 and Delta SARS-CoV-2 s2m homodimerization experiments require the discovery of unknown structural and thermodynamic changes necessary to rationalize the data. Using our reported SARS-CoV-2 s2m model, we induced the G15U substitution and performed 3.
View Article and Find Full Text PDFThe s2m, a highly conserved 41-nt hairpin structure in the SARS-CoV-2 genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and the subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p.
View Article and Find Full Text PDFHistone mRNA degradation is controlled by the unique 3' stem-loop of histone mRNA and the stem-loop binding protein (SLBP). As part of this process, the 3' stem-loop is trimmed by the histone-specific 3' exonuclease (3'hExo) and uridylated by the terminal uridylyl transferase 7 (TUT7), creating partially degraded intermediates with short uridylations. The role of these uridylations in degradation is not fully understood.
View Article and Find Full Text PDFThe stem loop 2 motif (s2m), a highly conserved 41-nucleotide hairpin structure in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, serves as an attractive therapeutic target that may have important roles in the virus life cycle or interactions with the host. However, the conserved s2m in Delta SARS-CoV-2, a previously dominant variant characterized by high infectivity and disease severity, has received relatively less attention than that of the original SARS-CoV-2 virus. The focus of this work is to identify and define the s2m changes between Delta and SARS-CoV-2 and subsequent impact of those changes upon the s2m dimerization and interactions with the host microRNA miR-1307-3p.
View Article and Find Full Text PDFStructure comparison and alignment are of fundamental importance in structural biology studies. We developed the first universal platform, US-align, to uniformly align monomer and complex structures of different macromolecules-proteins, RNAs and DNAs. The pipeline is built on a uniform TM-score objective function coupled with a heuristic alignment searching algorithm.
View Article and Find Full Text PDFMotivation: The full description of nucleic acid conformation involves eight torsion angles per nucleotide. To simplify this description, we previously developed a representation of the nucleic acid backbone that assigns each nucleotide a pair of pseudo-torsion angles (eta and theta defined by P and C4' atoms; or eta' and theta' defined by P and C1' atoms). A Java program, AMIGOS II, is currently available for calculating eta and theta angles for RNA and for performing motif searches based on eta and theta angles.
View Article and Find Full Text PDF