Publications by authors named "Morgan R Frank"

Disruptions, such as closures of businesses during pandemics, not only affect businesses and amenities directly but also influence how people move, spreading the impact to other businesses and increasing the overall economic shock. However, it is unclear how much businesses depend on each other during disruptions. Leveraging human mobility data and same-day visits in five US cities, we quantify dependencies between points of interest encompassing businesses, stores and amenities.

View Article and Find Full Text PDF

Higher education plays a critical role in driving an innovative economy by equipping students with knowledge and skills demanded by the workforce. While researchers and practitioners have developed data systems to track detailed occupational skills, such as those established by the U.S.

View Article and Find Full Text PDF

The green energy revolution may displace 1.7 million fossil fuel workers in the US but a Just Transition to emerging green industry jobs offers possibilities for re-employing these workers. Here, using 14 years of power plant data from the US Energy Information Administration, job transition data from the Census Bureau, as well as employment and skills data from the Bureau of Labor Statistics, we assess whether people employed in fossil fuel resource extraction today are co-located and have the transferable skills to switch to expected green jobs.

View Article and Find Full Text PDF

Understanding shifts in creative work will help guide AI's impact on the media ecosystem.

View Article and Find Full Text PDF

Higher education is a source of skill acquisition for many middle- and high-skilled jobs. But what specific skills do universities impart on students to prepare them for desirable careers? In this study, we analyze a large novel corpora of over one million syllabi from over eight hundred bachelors' granting US educational institutions to connect material taught in higher education to the detailed work activities in the US economy as reported by the US Department of Labor. First, we show how differences in taught skills both within and between college majors correspond to earnings differences of recent graduates.

View Article and Find Full Text PDF

In the United States (US), low-income workers are being pushed away from city centers where the cost of living is high. The effects of such changes on labor mobility and housing price have been explored in the literature. However, few studies have focused on the occupations and specific skills that identify the most susceptible workers.

View Article and Find Full Text PDF

Cities are the innovation centers of the US economy, but technological disruptions can exclude workers and inhibit a middle class. Therefore, urban policy must promote the jobs and skills that increase worker pay, create employment, and foster economic resilience. In this paper, we model labor market resilience with an ecologically-inspired job network constructed from the similarity of occupations' skill requirements.

View Article and Find Full Text PDF

Is there a universal economic pathway individual cities recapitulate over and over? This evolutionary structure-if any-would inform a reference model for fairer assessment, better maintenance, and improved forecasting of urban development. Using employment data including more than 100 million U.S.

View Article and Find Full Text PDF

Rapid advances in artificial intelligence (AI) and automation technologies have the potential to significantly disrupt labor markets. While AI and automation can augment the productivity of some workers, they can replace the work done by others and will likely transform almost all occupations at least to some degree. Rising automation is happening in a period of growing economic inequality, raising fears of mass technological unemployment and a renewed call for policy efforts to address the consequences of technological change.

View Article and Find Full Text PDF

Economic inequality is one of the biggest challenges facing society today. Inequality has been recently exacerbated by growth in high- and low-wage occupations at the expense of middle-wage occupations, leading to a "hollowing" of the middle class. Yet, our understanding of how workplace skills drive this process is limited.

View Article and Find Full Text PDF

The city has proved to be the most successful form of human agglomeration and provides wide employment opportunities for its dwellers. As advances in robotics and artificial intelligence revive concerns about the impact of automation on jobs, a question looms: how will automation affect employment in cities? Here, we provide a comparative picture of the impact of automation across US urban areas. Small cities will undertake greater adjustments, such as worker displacement and job content substitutions.

View Article and Find Full Text PDF

Reciprocity stabilizes cooperation from the level of microbes all the way up to humans interacting in small groups, but does reciprocity also underlie stable cooperation between larger human agglomerations, such as nation states? Famously, evolutionary models show that reciprocity could emerge as a widespread strategy for achieving international cooperation. However, existing studies have only detected reciprocity-driven cooperation in a small number of country pairs. We apply a new method for detecting mutual influence in dynamical systems to a new large-scale data set that records state interactions with high temporal resolution.

View Article and Find Full Text PDF

Bayesian truth serum (BTS) is an exciting new method for improving honesty and information quality in multiple-choice survey, but, despite the method's mathematical reliance on large sample sizes, existing literature about BTS only focuses on small experiments. Combined with the prevalence of online survey platforms, such as Amazon's Mechanical Turk, which facilitate surveys with hundreds or thousands of participants, BTS must be effective in large-scale experiments for BTS to become a readily accepted tool in real-world applications. We demonstrate that BTS quantifiably improves honesty in large-scale online surveys where the "honest" distribution of answers is known in expectation on aggregate.

View Article and Find Full Text PDF

We propose and develop a Lexicocalorimeter: an online, interactive instrument for measuring the "caloric content" of social media and other large-scale texts. We do so by constructing extensive yet improvable tables of food and activity related phrases, and respectively assigning them with sourced estimates of caloric intake and expenditure. We show that for Twitter, our naive measures of "caloric input", "caloric output", and the ratio of these measures are all strong correlates with health and well-being measures for the contiguous United States.

View Article and Find Full Text PDF

Using human evaluation of 100,000 words spread across 24 corpora in 10 languages diverse in origin and culture, we present evidence of a deep imprint of human sociality in language, observing that (i) the words of natural human language possess a universal positivity bias, (ii) the estimated emotional content of words is consistent between languages under translation, and (iii) this positivity bias is strongly independent of frequency of word use. Alongside these general regularities, we describe interlanguage variations in the emotional spectrum of languages that allow us to rank corpora. We also show how our word evaluations can be used to construct physical-like instruments for both real-time and offline measurement of the emotional content of large-scale texts.

View Article and Find Full Text PDF

The patterns of life exhibited by large populations have been described and modeled both as a basic science exercise and for a range of applied goals such as reducing automotive congestion, improving disaster response, and even predicting the location of individuals. However, these studies have had limited access to conversation content, rendering changes in expression as a function of movement invisible. In addition, they typically use the communication between a mobile phone and its nearest antenna tower to infer position, limiting the spatial resolution of the data to the geographical region serviced by each cellphone tower.

View Article and Find Full Text PDF

We conduct a detailed investigation of correlations between real-time expressions of individuals made across the United States and a wide range of emotional, geographic, demographic, and health characteristics. We do so by combining (1) a massive, geo-tagged data set comprising over 80 million words generated in 2011 on the social network service Twitter and (2) annually-surveyed characteristics of all 50 states and close to 400 urban populations. Among many results, we generate taxonomies of states and cities based on their similarities in word use; estimate the happiness levels of states and cities; correlate highly-resolved demographic characteristics with happiness levels; and connect word choice and message length with urban characteristics such as education levels and obesity rates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionenlbfrtobfp7e1l36tdlag9c2nnodo6v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once