Regulatory T cells, characterized by their expression of the transcription factor Forkhead box P3, are indispensable in maintaining immune homeostasis. The respiratory system is constantly exposed to many environmental challenges, making it susceptible to various insults and infections. Regulatory T cells play essential roles in maintaining homeostasis in the lung and promoting repair after injury.
View Article and Find Full Text PDFCD4 forkhead box P3 (FOXP3) regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
February 2023
Sex as a biological variable is an essential element of preclinical research. Sex-specific differences in lung volume, alveolar number, body weight, and the relationship between lung and body weight result in important questions about generating equivalent injuries in males and females so that comparisons in their responses can be assessed. Few studies compare stimulus dosing methods for murine lung models investigating immune responses.
View Article and Find Full Text PDFDespite an ongoing focus on the role of diet in health and disease, we have only a limited understanding of these concepts at the cellular and molecular levels. While obesity has been clearly recognized as contributing to metabolic syndrome and the pathogenesis of adult asthma, recent evidence has linked high sugar intake alone to an increased risk of developing asthma in childhood. In this study, we examined the impact of diet in a mouse model of allergic airways inflammation with a specific focus on eosinophils.
View Article and Find Full Text PDFAsthma is a highly prevalent disorder characterized by chronic lung inflammation and reversible airways obstruction. Pathophysiological features of asthma include episodic and reversible airway narrowing due to increased bronchial smooth muscle shortening in response to external and host-derived mediators, excessive mucus secretion into the airway lumen, and airway remodeling. The aberrant airway smooth muscle (ASM) phenotype observed in asthma manifests as increased sensitivity to contractile mediators (EC) and an increase in the magnitude of contraction (E); collectively these attributes have been termed "airways hyper-responsiveness" (AHR).
View Article and Find Full Text PDFWe review three recent findings that have fundamentally altered our understanding of causative mechanisms underlying fungal-related asthma. These mechanisms may be partially independent of host inflammatory processes but are strongly dependent upon the actions of Alp1 on lung structural cells. They entail (i) bronchial epithelial sensing of Alp1; (ii) Alp1-induced airway smooth muscle (ASM) contraction; (iii) Alp1-induced airflow obstruction.
View Article and Find Full Text PDFBackground: Allergens elicit host production of mediators acting on G-protein-coupled receptors to regulate airway tone. Among these is prostaglandin E2 (PGE2), which, in addition to its role as a bronchodilator, has anti-inflammatory actions. Some patients with asthma develop bronchospasm after the ingestion of aspirin and other nonsteroidal anti-inflammatory drugs, a disorder termed aspirin-exacerbated respiratory disease.
View Article and Find Full Text PDF