Publications by authors named "Morgan Maeder"

Mutations in USH2A gene account for most cases of Usher syndrome type II (USH2), characterized by a combination of congenital hearing loss and progressive vision loss. In particular, approximately 30% of USH2A patients harbor a single base pair deletion, c.2299delG, in exon 13 that creates a frameshift and premature stop codon, leading to a nonfunctional USH2A protein.

View Article and Find Full Text PDF

Leber congenital amaurosis type 10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. We developed EDIT-101, a candidate genome-editing therapeutic, to remove the aberrant splice donor created by the IVS26 mutation in the CEP290 gene and restore normal CEP290 expression. Key to this therapeutic, we identified a pair of Staphylococcus aureus Cas9 guide RNAs that were highly active and specific to the human CEP290 target sequence.

View Article and Find Full Text PDF

Mutations in , the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair.

View Article and Find Full Text PDF

Background: Understanding the diversity of repair outcomes after introducing a genomic cut is essential for realizing the therapeutic potential of genomic editing technologies. Targeted PCR amplification combined with Next Generation Sequencing (NGS) or enzymatic digestion, while broadly used in the genome editing field, has critical limitations for detecting and quantifying structural variants such as large deletions (greater than approximately 100 base pairs), inversions, and translocations.

Results: To overcome these limitations, we have developed a Uni-Directional Targeted Sequencing methodology, UDiTaS, that is quantitative, removes biases associated with variable-length PCR amplification, and can measure structural changes in addition to small insertion and deletion events (indels), all in a single reaction.

View Article and Find Full Text PDF

Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences.

View Article and Find Full Text PDF

Background: CRISPR-Cas systems have been broadly embraced as effective tools for genome engineering applications, with most studies to date utilizing the Streptococcus pyogenes Cas9. Here we characterize and manipulate the smaller, 1053 amino acid nuclease Staphylococcus aureus Cas9.

Results: We find that the S.

View Article and Find Full Text PDF

Genome editing using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated 9 (Cas9) technology is revolutionizing the study of gene function and likely will give rise to an entire new class of therapeutics for a wide range of diseases. Achieving this goal requires not only characterization of the technology for efficacy and specificity but also optimization of its delivery to the target cells for each disease indication. In this review we survey the various methods by which the CRISPR-Cas9 components have been delivered to cells and highlight some of the more clinically relevant approaches.

View Article and Find Full Text PDF

In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity.

View Article and Find Full Text PDF

Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains or that natively bind to anionic nucleic acids.

View Article and Find Full Text PDF

Pathologic blood clotting is a leading cause of morbidity and mortality in the developed world, underlying deep vein thrombosis, myocardial infarction, and stroke. Genetic predisposition to thrombosis is still poorly understood, and we hypothesize that there are many additional risk alleles and modifying factors remaining to be discovered. Mammalian models have contributed to our understanding of thrombosis, but are low throughput and costly.

View Article and Find Full Text PDF

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways.

View Article and Find Full Text PDF

Genome-wide studies have defined cell type-specific patterns of DNA methylation that are important for regulating gene expression in both normal development and disease. However, determining the functional significance of specific methylation events remains challenging, owing to the lack of methods for removing such modifications in a targeted manner. Here we describe an approach for efficient targeted demethylation of specific CpGs in human cells using fusions of engineered transcription activator-like effector (TALE) repeat arrays and the TET1 hydroxylase catalytic domain.

View Article and Find Full Text PDF

Short guide RNAs (gRNAs) can direct catalytically inactive CRISPR-associated 9 nuclease (dCas9) to repress endogenous genes in bacteria and human cells. Here we show that single or multiple gRNAs can direct dCas9 fused to a VP64 transcriptional activation domain to increase expression of endogenous human genes. This proof-of-principle work shows that clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems can target heterologous effector domains to endogenous sites in human cells.

View Article and Find Full Text PDF

We have previously reported a simple and customizable CRISPR (clustered regularly interspaced short palindromic repeats) RNA-guided Cas9 nuclease (RGN) system that can be used to efficiently and robustly introduce somatic indel mutations in endogenous zebrafish genes. Here we demonstrate that RGN-induced mutations are heritable, with efficiencies of germline transmission reaching as high as 100%. In addition, we extend the power of the RGN system by showing that these nucleases can be used with single-stranded oligodeoxynucleotides (ssODNs) to create precise intended sequence modifications, including single nucleotide substitutions.

View Article and Find Full Text PDF

Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants.

View Article and Find Full Text PDF

Clustered, regularly interspaced, short palindromic repeat (CRISPR) RNA-guided nucleases (RGNs) have rapidly emerged as a facile and efficient platform for genome editing. Here, we use a human cell-based reporter assay to characterize off-target cleavage of CRISPR-associated (Cas)9-based RGNs. We find that single and double mismatches are tolerated to varying degrees depending on their position along the guide RNA (gRNA)-DNA interface.

View Article and Find Full Text PDF

Recessive dystrophic epidermolysis bullosa (RDEB) is characterized by a functional deficit of type VII collagen protein due to gene defects in the type VII collagen gene (COL7A1). Gene augmentation therapies are promising, but run the risk of insertional mutagenesis. To abrogate this risk, we explored the possibility of using engineered transcription activator-like effector nucleases (TALEN) for precise genome editing.

View Article and Find Full Text PDF

Artificial activators designed using transcription activator-like effector (TALE) technology have broad utility, but previous studies suggest that these monomeric proteins often exhibit low activities. Here we demonstrate that TALE activators can robustly function individually or in synergistic combinations to increase expression of endogenous human genes over wide dynamic ranges. These findings will encourage applications of TALE activators for research and therapy, and guide design of monomeric TALE-based fusion proteins.

View Article and Find Full Text PDF

In bacteria, foreign nucleic acids are silenced by clustered, regularly interspaced, short palindromic repeats (CRISPR)--CRISPR-associated (Cas) systems. Bacterial type II CRISPR systems have been adapted to create guide RNAs that direct site-specific DNA cleavage by the Cas9 endonuclease in cultured cells. Here we show that the CRISPR-Cas system functions in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies similar to those obtained using zinc finger nucleases and transcription activator-like effector nucleases.

View Article and Find Full Text PDF

Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using Oligomerized Pool Engineering (OPEN) ZFNs.

View Article and Find Full Text PDF

Engineered designer nucleases can be used to efficiently modify genomic sequence in a wide variety of model organisms and cell types. Zinc finger nucleases (ZFNs), consisting of an engineered zinc finger array fused to a non-specific cleavage domain, have been extensively used to modify a broad range of endogenous genes. Protocols for engineering ZFNs targeted to specific gene sequences of interest using the context-dependent assembly (CoDA) method are described in this unit.

View Article and Find Full Text PDF

The combination of induced pluripotent stem cell (iPSC) technology and targeted gene modification by homologous recombination (HR) represents a promising new approach to generate genetically corrected, patient-derived cells that could be used for autologous transplantation therapies. This strategy has several potential advantages over conventional gene therapy including eliminating the need for immunosuppression, avoiding the risk of insertional mutagenesis by therapeutic vectors, and maintaining expression of the corrected gene by endogenous control elements rather than a constitutive promoter. However, gene targeting in human pluripotent cells has remained challenging and inefficient.

View Article and Find Full Text PDF

Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-positive breast cancer cell lines.

View Article and Find Full Text PDF

Zinc-finger nucleases (ZFNs) are a powerful tool that can be used to edit the human genome ad libitum. The technology has experienced remarkable development in the last few years with regard to both the target site specificity and the engineering platforms used to generate zinc-finger proteins. As a result, two phase I clinical trials aimed at knocking out the CCR5 receptor in T cells isolated from HIV patients to protect these lymphocytes from infection with the virus have been initiated.

View Article and Find Full Text PDF