Image-guided surgery collocates patient-specific data with the physical environment to facilitate surgical decision making. Unfortunately, these guidance systems commonly become compromised by intraoperative soft-tissue deformations. Nonrigid image-to-physical registration methods have been proposed to compensate for deformations, but clinical utility requires compatibility of these techniques with data sparsity and temporal constraints in the operating room.
View Article and Find Full Text PDFPurpose: Computational methods for image-to-physical registration during surgical guidance frequently rely on sparse point clouds obtained over a limited region of the organ surface. However, soft tissue deformations complicate the ability to accurately infer anatomical alignments from sparse descriptors of the organ surface. The Image-to-Physical Liver Registration Sparse Data Challenge introduced at SPIE Medical Imaging 2019 seeks to characterize the performance of sparse data registration methods on a common dataset to benchmark and identify effective tactics and limitations that will continue to inform the evolution of image-to-physical registration algorithms.
View Article and Find Full Text PDFObjective: Deformable object tracking is common in the computer vision field, with applications typically focusing on nonrigid shape detection and usually not requiring specific three-dimensional point localization. In surgical guidance however, accurate navigation is intrinsically linked to precise correspondence of tissue structure. This work presents a contactless, automated fiducial acquisition method using stereo video of the operating field to provide reliable three-dimensional fiducial localization for an image guidance framework in breast conserving surgery.
View Article and Find Full Text PDFBackground: Simulating soft-tissue breast deformations is of interest for many applications including image fusion, longitudinal registration, and image-guided surgery. For the surgical use case, positional changes cause breast deformations that compromise the use of preoperative imaging to inform tumor excision. Even when acquiring imaging in the supine position, which better reflects surgical presentation, deformations still occur due to arm motion and orientation changes.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
November 2022
Purpose: Breast conserving surgery (BCS) is a common procedure for early-stage breast cancer patients. Supine preoperative magnetic resonance (MR) breast imaging for visualizing tumor location and extent, while not standard for procedural guidance, is being explored since it more closely represents the surgical presentation compared to conventional diagnostic imaging positions. Despite this preoperative imaging position, deformation is still present between the supine imaging and surgical state.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
April 2022
Breast conserving surgery (BCS) is a common procedure for early-stage breast cancer patients. Supine preoperative magnetic resonance (MR) breast imaging for visualizing tumor location and extent, while not standard for procedural guidance, more closely represents the surgical presentation compared to conventional diagnostic pendant positioning. Optimal utilization for surgical guidance, however, requires a fast and accurate image-to-physical registration from preoperative imaging to intraoperative surgical presentation.
View Article and Find Full Text PDFObjective: During breast conserving surgery (BCS), magnetic resonance (MR) images aligned to accurately display intraoperative lesion locations can offer improved understanding of tumor extent and position relative to breast anatomy. Unfortunately, even under consistent supine conditions, soft tissue deformation compromises image-to-physical alignment and results in positional errors.
Methods: A finite element inverse modeling technique has been developed to nonrigidly register preoperative supine MR imaging data to the surgical scene for improved localization accuracy during surgery.
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
View Article and Find Full Text PDF