Publications by authors named "Morgan Fogarty"

Human studies of early brain development have been limited by extant neuroimaging methods. MRI scanners present logistical challenges for imaging young children, while alternative modalities like functional near-infrared spectroscopy have traditionally been limited by image quality due to sparse sampling. In addition, conventional tasks for brain mapping elicit low task engagement, high head motion, and considerable participant attrition in pediatric populations.

View Article and Find Full Text PDF

Brain cells are arranged in laminar, nuclear, or columnar structures, spanning a range of scales. Here, we construct a reliable cell census in the frontal lobe of human cerebral cortex at micrometer resolution in a magnetic resonance imaging (MRI)-referenced system using innovative imaging and analysis methodologies. MRI establishes a macroscopic reference coordinate system of laminar and cytoarchitectural boundaries.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) images of ex vivo human brain tissue are corrupted by multiplicative speckle noise that degrades the contrast to noise ratio (CNR) of microstructural compartments. This work proposes a novel algorithm to reduce noise corruption in OCT images that minimizes the penalized negative log likelihood of gamma distributed speckle noise. The proposed method is formulated as a majorize-minimize problem that reduces to solving an iterative regularized least squares optimization.

View Article and Find Full Text PDF

The surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples.

View Article and Find Full Text PDF

Connectomics has proved promising in quantifying and understanding the effects of development, aging and an array of diseases on the brain. In this work, we propose a new structural connectivity measure from diffusion MRI that allows us to incorporate direct brain connections, as well as indirect ones that would not be otherwise accounted for by standard techniques and that may be key for the better understanding of function from structure. From our experiments on the Human Connectome Project dataset, we find that our measure of structural connectivity better correlates with functional connectivity than streamline tractography does, meaning that it provides new structural information related to function.

View Article and Find Full Text PDF

Optical coherence tomography is an optical technique that uses backscattered light to highlight intrinsic structure, and when applied to brain tissue, it can resolve cortical layers and fiber bundles. Optical coherence microscopy (OCM) is higher resolution (i.e.

View Article and Find Full Text PDF