Publications by authors named "Morgan E Ware"

Polarimetric Terahertz Transmission Imaging of Crystal Quartz Sample.

2023 IEEE Int Symp Antennas Propag USNC URSI Radio Sci Meet AP S URSI 2023 (2023)

July 2023

This paper investigates polarimetric terahertz time domain transmission imaging aiming at enhancing the detection of different regions on the same sample. Here, x-cut quartz crystal adjacent to quartz glass are utilized to compose a sample that hypothetically mimics breast tumor of cancerous and healthy regions, respectively. The obtained images establish a potential advantage of polarimetric terahertz imaging for future use in imaging excised breast cancer tumors.

View Article and Find Full Text PDF

Surface atomic arrangement and physical properties of aluminum ultrathin layers on c-Si(111)-7 × 7 and hydrogen-terminated c-Si(111)-1 × 1 surfaces deposited using molecular beam epitaxy were investigated. X-ray photoelectron spectroscopy spectra were collected in two configurations (take-off angle of 0° and 45°) to precisely determine the surface species. Moreover, 3D atomic force microscopy (AFM) images of the air-exposed samples were acquired to investigate the clustering formations in film structure.

View Article and Find Full Text PDF

The band offsets for the β-(AlGa)O/β-GaO (010) heterojunction have been experimentally measured by X-ray photoelectron spectroscopy. High-quality β-(AlGa)O films were grown by metal-organic chemical vapor deposition for characterization. The indirect band gap of β-(AlGa)O was determined by optical transmission to be 4.

View Article and Find Full Text PDF

Unlabelled: Strain engineering as one of the most powerful techniques for tuning optical and electronic properties of Ill-nitrides requires reliable methods for strain investigation. In this work, we reveal, that the linear model based on the experimental data limited to within a small range of biaxial strains (< 0.2%), which is widely used for the non-destructive Raman study of strain with nanometer-scale spatial resolution is not valid for the binary wurtzite-structure group-III nitrides GaN and AlN.

View Article and Find Full Text PDF

Self-assembled quantum dots grown by molecular beam epitaxy have been a hotbed for various fundamental research and device applications over the past decades. Among them, InAs/GaAs quantum dots have shown great potential for applications in quantum information, quantum computing, infrared photodetection, etc. Though intensively studied, some of the optical nonlinear properties of InAs/GaAs quantum dots, specifically the associated two-photon absorption of the wetting and barrier layers, have not been investigated yet.

View Article and Find Full Text PDF

GaSb quantum dots (QDs) have been grown by droplet epitaxy within InAlAs barrier layers on an InP (001) substrate. The droplet growth mode facilitates a larger size (average height ∼4.5 nm) and a lower density (∼6.

View Article and Find Full Text PDF

We investigate the optical properties of InGaAs surface quantum dots (SQDs) in a composite nanostructure with a layer of similarly grown buried quantum dots (BQDs) separated by a thick GaAs spacer, but with varied areal densities of SQDs controlled by using different growth temperatures. Such SQDs behave differently from the BQDs, depending on the surface morphology. Dedicated photoluminescence (PL) measurements for the SQDs grown at 505 °C reveal that the SQD emission follows different relaxation channels while exhibiting abnormal thermal quenching.

View Article and Find Full Text PDF

Single layer self-assembled InGaAs quantum dots (QDs) are manipulated by using different arsenic species on GaAs (100) surface. The As molecules are experimentally observed to be more promising than As to promote the formation of one-dimensionally-aligned QD-chain arrays. The lateral alignment of QDs and the corresponding formation of dot chains are explained by the anisotropic surface kinetics in combination with the different reactivities of the two molecules with bonding sites on the GaAs (100) surface.

View Article and Find Full Text PDF

We experimentally demonstrate that the conductivity of graded AlGaN increases as a function of the magnitude of the Al concentration gradient (%Al/nm) due to polarization doping effects, without the use of impurity dopants. Using three up/down-graded AlGaN nanolayers with Al gradients ranging from ∼0.16 to ∼0.

View Article and Find Full Text PDF

Infrared (IR) reflectance spectroscopy is applied to study Si-doped multilayer n/n/n-GaN structure grown on GaN buffer with GaN-template/sapphire substrate. Analysis of the investigated structure by photo-etching, SEM, and SIMS methods showed the existence of the additional layer with the drastic difference in Si and O doping levels and located between the epitaxial GaN buffer and template. Simulation of the experimental reflectivity spectra was performed in a wide frequency range.

View Article and Find Full Text PDF

Photoluminescence (PL) is investigated as a function of the excitation intensity and temperature for lattice-matched InGaAs/InAlAs quantum well (QW) structures with well thicknesses of 7 and 15 nm, respectively. At low temperature, interface fluctuations result in the 7-nm QW PL exhibiting a blueshift of 15 meV, a narrowing of the linewidth (full width at half maximum, FWHM) from 20.3 to 10 meV, and a clear transition of the spectral profile with the laser excitation intensity increasing four orders in magnitude.

View Article and Find Full Text PDF

InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS).

View Article and Find Full Text PDF

The optical properties of InGaAs/GaAs surface quantum dots (SQDs) and buried QDs (BQDs) are investigated by photoluminescence (PL) measurements. The integrated PL intensity, linewidth, and lifetime of SQDs are significantly different from the BQDs both at room temperature and at low temperature. The differences in PL response, measured at both steady state and in transient, are attributed to carrier transfer between the surface states and the SQDs.

View Article and Find Full Text PDF

Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation.

View Article and Find Full Text PDF

The depth distribution of strain and composition in graded Al x Ga1 - x N films and nanowires (NWs) are studied theoretically using the kinematical theory of X-ray diffraction. By calculating [Formula: see text] reciprocal space maps (RSMs), we demonstrate significant differences in the intensity distributions from graded Al x Ga1 - x N films and NWs. We attribute these differences to relaxation of the substrate-induced strain on the NWs free side walls.

View Article and Find Full Text PDF

The III-V nanowire quantum dots (NWQDs) monolithically grown on silicon substrates, combining the advantages of both one- and zero-dimensional materials, represent one of the most promising technologies for integrating advanced III-V photonic technologies on a silicon microelectronics platform. However, there are great challenges in the fabrication of high-quality III-V NWQDs by a bottom-up approach, that is, growth by the vapor-liquid-solid method, because of the potential contamination caused by external metal catalysts and the various types of interfacial defects introduced by self-catalyzed growth. Here, we report the defect-free self-catalyzed III-V NWQDs, GaAs quantum dots in GaAsP nanowires, on a silicon substrate with pure zinc blende structure for the first time.

View Article and Find Full Text PDF

We report on AlxGa1-xN heterostructures resulting from the coherent growth of a positive then a negative gradient of the Al concentration on a [0001]-oriented GaN substrate. These polarization-doped p-n junction structures were characterized at the nanoscale by a combination of averaging as well as depth-resolved experimental techniques including: cross-sectional transmission electron microscopy, high-resolution X-ray diffraction, Rutherford backscattering spectrometry, and scanning probe microscopy. We observed that a small miscut in the substrate orientation along with the accumulated strain during growth led to a change in the mosaic structure of the AlxGa1-xN film, resulting in the formation of macrosteps on the surface.

View Article and Find Full Text PDF

A strong dependence of quantum dot (QD)-quantum well (QW) tunnel coupling on the energy band alignment is established in hybrid InAs/GaAs-In(x)Ga(1-x)As/GaAs dot-well structures by changing the QW composition to shift the QW energy through the QD wetting layer (WL) energy. Due to this coupling a rapid carrier transfer from the QW to the QD excited states takes place. As a result, the QW photoluminescence (PL) completely quenches at low excitation intensities.

View Article and Find Full Text PDF

We present a comparative study of the strain relaxation of GaN/AlN short-period superlattices (SLs) grown on two different III-nitride substrates introducing different amounts of compensating strain into the films. We grow by plasma-assisted molecular beam epitaxy (0001)-oriented SLs on a GaN buffer deposited on GaN(thick)-on-sapphire template and on AlN(thin)-on-sapphire template. The ex-situ analysis of strain, crack formation, dislocation density, and microstructure of the SL layers has established that the mechanism of strain relaxation in these structures depends on the residual strain in substrate and is determined mainly by the lattice mismatch between layers.

View Article and Find Full Text PDF