Clostridiodes difficile infection (CDI) is the leading cause of hospital-acquired gastrointestinal infections in the U.S. While the immune response to C.
View Article and Find Full Text PDFToll-like receptor (TLR) 2 recognizes and responds to threats early in bacterial infections and can influence the downstream immune response to the host's benefit or detriment. Therapeutic modulation of TLR2 signaling represents an underutilized opportunity to moderate the immune response to infection to promote an improved outcome for the host.
View Article and Find Full Text PDFClostridium difficile (C. difficile) incidence has tripled over the past 15 years and is attributed to the emergence of hypervirulent strains. While it is clear that C.
View Article and Find Full Text PDFClostridium difficile infection (CDI) is the number one hospital-acquired infection in the United States. CDI is more common and severe in inflammatory bowel disease patients. Here, we studied the mechanism by which prior colitis exacerbates CDI.
View Article and Find Full Text PDFMalaria continues to be one of the deadliest diseases worldwide, and the emergence of drug resistance parasites is a constant threat. Plasmodium parasites utilize the methylerythritol phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are essential for parasite growth. Previously, we and others identified that the Malaria Box compound MMV008138 targets the apicoplast and that parasite growth inhibition by this compound can be reversed by supplementation of IPP.
View Article and Find Full Text PDFCompounds that target isoprenoid biosynthesis in Plasmodium falciparum could be a welcome addition to malaria chemotherapy, since the methylerythritol phosphate (MEP) pathway used by the parasite is not present in humans. We previously reported that MMV008138 targets the apicoplast of P. falciparum and that its target in the MEP pathway differs from that of Fosmidomycin.
View Article and Find Full Text PDF