Grass-fed beef is becoming increasingly popular and is expected to be a $14 billion industry by 2024. Even so, grass-fed beef is typically darker in appearance than that of conventional grain-fed beef. Aging has been shown to improve lean color (*, *) of dark-cutting beef however little work has focused on aging as it relates to improving the lean color of grass-fed beef.
View Article and Find Full Text PDFWooden breast (WB) is a myopathy that occurs in pectoralis major (PM) muscles, predominately affecting large, fast-growing broilers. Severe myodegeneration, increased hypoxia, reduced blood flow, and increased collagen deposition are hallmark characteristics of WB that culminate in unsatisfactory fresh meat quality attributes, such as poor water-holding capacity, tenderness, and processing characteristics. Therefore, WB meat is often downgraded resulting in economic losses for the United States poultry industry.
View Article and Find Full Text PDF: Mitochondria are considered the powerhouse of cells, and skeletal muscle cells are no exception. However, information regarding muscle mitochondria from different species is limited. : Different muscles from cattle, pigs and chickens were analyzed for mitochondrial DNA (mtDNA), protein and oxygen consumption.
View Article and Find Full Text PDFSkeletal muscle metabolism has implications for swine feed efficiency (FE); however, it remains unclear if the metabolic profile of skeletal muscle changes during postnatal growth. To assess the metabolic changes, samples were collected from the (LD, glycolytic muscle), (LAT, mixed muscle), and (MS, oxidative muscle) at 20, 53, 87, 120, and 180 days of age from barrows. Muscles were assessed to determine the abundance of several metabolic enzymes.
View Article and Find Full Text PDFIn March 2020, the World Health Organization declared COVID-19 a pandemic, which ultimately led to many meat processors temporarily shutting down or reducing processing capacity. This backlog in processing capacity forced many feedlots to retain cattle for longer periods of time and assume the risk of major market fluctuations. The aim of this study was to understand how a dietary insult affects meat quality and muscle metabolism in market-ready steers (590 kg).
View Article and Find Full Text PDFThe aim of this study was to determine the impact of accelerated aging (AA) on shelf stability, product loss, sensory and biochemical characteristics of 2 lower quality beef cuts. Triceps brachii (TB) and semimembranosus (SM) were collected and fabricated from 10 USDA Choice beef carcasses and assigned to 1 of 6 treatments: 3 d cooler aged (control), 21 d cooler aged, AA 49 °C for 2 h, AA 49 °C for 3 h, AA 54 °C for 2 h, and AA 54 °C for 3 h. The results showed that AA can decrease APC counts on steak surface and in purge and redness, but increase lightness and product loss of the steaks (P < 0.
View Article and Find Full Text PDFVariations in postmortem metabolism in muscle impact pork quality development. Curiously, some genetic lines are more refractile to adverse pork quality development than others and may regulate energy metabolism differently. The aim of this study was to challenge pork carcasses from different genetic populations with electrical stimulation (ES) to determine how postmortem metabolism varies with genetic line and explore control points that reside in glycolysis in dying muscle.
View Article and Find Full Text PDFThe aim of this study was to characterize structural and property modifications of intramuscular connective tissue (IMCT) during extended aging. Longissimus lumborum (LL), Gluteus medius (GM), and Gastrocnemius (GT) muscles were collected from 10 USDA choice carcasses, fabricated and assigned to one of four aging periods: 3, 21, 42, or 63 days (n = 120). As expected, tenderness improved, and IMCT texture weakened after 21 days of postmortem aging (dpm; P < 0.
View Article and Find Full Text PDFSkeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity.
View Article and Find Full Text PDFBesides its roles in locomotion and thermogenesis, skeletal muscle plays a significant role in global glucose metabolism and insulin sensitivity through complex nutrient sensing networks. Our previous work showed that the muscle-specific ablation of O-GlcNAc transferase (OGT) led to a lean phenotype through enhanced interleukin-15 (IL-15) expression. We also showed OGT epigenetically modified and repressed the promoter.
View Article and Find Full Text PDFO-GlcNAcylation is a posttranslational modification considered to be a nutrient sensor that reports nutrient scarcity or surplus. Although O-GlcNAcylation exists in a wide range of cells and/or tissues, its functional role in muscle satellite cells (SCs) remains largely unknown. Using a genetic approach, we ablated O-GlcNAc transferase (OGT), and thus O-GlcNAcylation, in SCs.
View Article and Find Full Text PDF