Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates.
View Article and Find Full Text PDFSuper gas barrier nanocoatings are recently demonstrated by combining polyelectrolytes and clay nanoplatelets with layer-by-layer deposition. These nanobrick wall thin films match or exceed the gas barrier of SiOx and metallized films, but they are relatively stiff and lose barrier with significant stretching (≥ 10% strain). In an effort to impart stretchability, hydrogen-bonding polyglycidol (PGD) layers are added to an electrostatically bonded thin film assembly of polyethylenimine (PEI) and montmorillonite (MMT) clay.
View Article and Find Full Text PDFSuper gas barrier thin films, fabricated with layer-by-layer assembly of polyethylenimine and graphene oxide, exhibit significantly reduced oxygen and carbon dioxide transmission rates. This thin film's nanobrick wall structure also provides high gas selectivity for hydrogen.
View Article and Find Full Text PDFThe ability to incorporate large-aspect-ratio vermiculite (VMT) clay into thin films fabricated using the layer-by-layer assembly techinique is reported for the first time. Thin films of branched polyethylenimine (PEI) and VMT were analyzed for their growth rate, clay composition, transparency, and gas barrier behavior. These films consist of >96 wt% clay, are >95% transparent, and, because of their nanobrick wall structure, exhibit super gas barrier behavior at thicknesses of <165 nm.
View Article and Find Full Text PDFThe influence of the clay deposition suspension concentration on gas barrier thin films of sodium montmorillonite (MMT) clay and branched polyethylenimine (PEI), created via layer-by-layer assembly, was investigated. Films grown with MMT suspension concentrations ranging from 0.05 to 2.
View Article and Find Full Text PDFFlexible and transparent polymeric "superbarrier" packaging materials have become increasingly important in recent years. Layer-by-layer assembly offers a facile technique for the fabrication of layered, polymer-clay superbarrier thin films. At only 51 nm thick, these nanocomposite thin films, comprised of 12 polymer and 4 clay layers, exhibit an oxygen permeability orders of magnitude lower than EVOH and SiOx.
View Article and Find Full Text PDFA versatile, high speed robot for layer-by-layer deposition of multifunctional thin films, which integrates concepts from previous dipping systems, has been designed with dramatic improvements in software, positioning, rinsing, drying, and waste removal. This system exploits the electrostatic interaction of oppositely charged species to deposit nanolayers (1-10 nm thick) from water onto the surface of a substrate. Dip times and number of deposited layers are adjustable through a graphical user interface.
View Article and Find Full Text PDF