Background: The aim of the present study was to examine the cytostatic effects of cold atmospheric plasma (CAP) on different head and neck squamous carcinoma (HNSCC) cell lines either in isolation or in combination with low dose cisplatin. The effect of CAP treatment was investigated by using three different HNSCC cell lines (chemo-resistant Cal 27, chemo-sensitive FaDu and OSC 19).
Materials And Method: Cell lines were exposed to CAP treatment for 30, 60, 90, 120 and 180 s (s).
Slow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles of two different sizes, was studied experimentally. The motion of individual particles was observed using video microscopy, and the self-part of the intermediate scattering function as well as the mean-squared particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior near the glass transition.
View Article and Find Full Text PDFObjective: Ear, nose and throat infections are among the most common reasons for absence from work. They are usually caused by various bacteria like Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Cold atmospheric plasma (CAP) can effectively eliminate even multi-resistant bacteria and has no cytotoxic or mutagenic effects on the mucosa when applied for less than 60s.
View Article and Find Full Text PDFUsing two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
View Article and Find Full Text PDFEnviron Mol Mutagen
April 2017
Cold atmospheric argon plasma is recognized as a new contact free approach for the decrease of bacterial load on chronic wounds in patients. So far very limited data are available on its toxicity and mutagenicity on eukaryotic cells. Thus, the toxic/mutagenic potential of cold atmospheric argon plasma using the MicroPlaSter β , which has been used efficiently in humans treating chronic and acute wounds, was investigated using the XTT assay in keratinocytes and fibroblasts and the HGPRT (hypoxanthine guanine phosphoribosyl transferase) assay with V79 Chinese hamster cells.
View Article and Find Full Text PDFPhys Rev Lett
February 2017
The wake-mediated propulsion of an "extra" particle in a channel of two neighboring rows of a two-dimensional plasma crystal, observed experimentally by Du et al. [Phys. Rev.
View Article and Find Full Text PDFNew complex-plasma facility, Plasmakristall-4 (PK-4), has been recently commissioned on board the International Space Station. In complex plasmas, the subsystem of μm-sized microparticles immersed in low-pressure weakly ionized gas-discharge plasmas becomes strongly coupled due to the high (10-10 e) electric charge on the microparticle surface. The microparticle subsystem of complex plasmas is available for the observation at the kinetic level, which makes complex plasmas appropriate for particle-resolved modeling of classical condensed matter phenomena.
View Article and Find Full Text PDFWe propose a method of determination of the dust particle spatial distribution in dust clouds that form in three-dimensional (3D) complex plasmas under microgravity conditions. The method utilizes the data obtained during the 3D scanning of a cloud, and it provides reasonably good accuracy. Based on this method, we investigate the particle density in a dust cloud realized in gas discharge plasma in the PK-3 Plus setup onboard the International Space Station.
View Article and Find Full Text PDFIn ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution.
View Article and Find Full Text PDFTemplate matching algorithms represent a viable tool to locate particles in optical images. A crucial factor of the performance of these methods is the choice of the similarity measure. Recently, it was shown in [Gao and Helgeson, Opt.
View Article and Find Full Text PDFComplex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas.
View Article and Find Full Text PDFThe spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev.
View Article and Find Full Text PDFHead and neck squamous cell cancer (HNSCC) is the 7th most common cancer worldwide. Despite the development of new therapeutic agents such as monoclonal antibodies, prognosis did not change for the last decades. Cold atmospheric plasma (CAP) presents the most promising new technology in cancer treatment.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) has been gaining increasing interest as a new approach for the treatment of skin diseases or wounds. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. This study explored in vitro and in vivo whether CAP influences gene expression and molecular mechanisms in keratinocytes.
View Article and Find Full Text PDFUnlabelled: Human norovirus (NoV) is the most frequent cause of epidemic nonbacterial acute gastroenteritis worldwide. We investigated the impact of nonthermal or cold atmospheric pressure plasma (CAPP) on the inactivation of a clinical human outbreak NoV, GII.4.
View Article and Find Full Text PDFFollowing surgery of cholesteatoma, a patient developed a chronic infection of the external auditory canal, including extended-spectrum β-lactamase producing Escherichia coli, which caused severe pain. The application of cold atmospheric plasma resulted in a significant reduction in pain and clearance of bacterial carriage, allowing antibiotics and analgesics to be ceased.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2014
The kinematics of dust particles during the early stage of mode-coupling induced melting of a two-dimensional plasma crystal is explored. It is found that the formation of the hybrid mode causes the particle vibrations to partially synchronize at the hybrid frequency. Phase- and frequency-locked hybrid particle motion in both vertical and horizontal directions (hybrid mode) is observed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Network analysis was used to study the structure and time evolution of driven three-dimensional complex plasma clusters. The clusters were created by suspending micron-size particles in a glass box placed on top of the rf electrode in a capacitively coupled discharge. The particles were highly charged and manipulated by an external electric field that had a constant magnitude and uniformly rotated in the horizontal plane.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
The observation is presented of naturally occurring pairing of particles and their cooperative drift in a two-dimensional plasma crystal. A single layer of plastic microspheres was suspended in the plasma sheath of a capacitively coupled radio-frequency discharge in argon at a low pressure of 1 Pa. The particle dynamics were studied by combining the top-view and side-view imaging of the suspension.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
A simple analytical approach to estimate thermodynamic properties of model Yukawa systems is presented. The approach extends the traditional Debye-Hückel theory into the regime of moderate coupling and is able to qualitatively reproduce thermodynamics of Yukawa systems up to the fluid-solid phase transition. The simplistic equation of state (pressure equation) is derived and applied to the hydrodynamic description of the longitudinal waves in Yukawa fluids.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Implications of the recently discovered effect of channeling of upstream extra particles for transport phenomena in a two-dimensional plasma crystal are discussed. Upstream particles levitated above the lattice layer and tended to move between the rows of lattice particles. An example of heat transport is considered, where upstream particles act as moving heat sources, which may lead to anomalous heat transport.
View Article and Find Full Text PDFA theory of the mode-coupling instability (MCI) in a fluid two-dimensional complex plasma is developed. In analogy to the point-wake model of the wake-mediated interactions commonly used to describe MCI in two-dimensional crystals, the layer-wake model is employed for fluids. It is demonstrated that the wake-induced coupling of wave modes occurs in both crystalline and fluid complex plasmas, but the confinement-density threshold, which determines the MCI onset in crystals, virtually disappears in fluids.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
The glass transition is investigated in three dimensions for single and double Yukawa potentials for the full range of control parameters. For vanishing screening parameter, the limit of the one-component plasma is obtained; for large screening parameters and high coupling strengths, the glass-transition properties cross over to the hard-sphere system. Between the two limits, the entire transition diagram can be described by analytical functions.
View Article and Find Full Text PDFThe Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region.
View Article and Find Full Text PDF