Reverse osmosis (RO) systems offer a viable solution for treating brackish water (BW), a common but underutilized water resource. However, the energy-intensive nature of brackish water reverse osmosis (BWRO) systems poses affordability challenges to water supply, necessitating a focus on minimizing their energy consumption to support SDG6's goal of providing safe and affordable drinking water for all. This study addresses the critical need to minimize the specific energy consumption (SEC) of a typical BWRO system, defined as the energy consumed per unit of water recovered, mathematically and experimentally.
View Article and Find Full Text PDFPoroelastic fluid-structure interaction models were coupled to experimental data to determine the effects of biofilm spatial distribution of mechanical and hydraulic properties on the biofilm hydraulic resistance and compressibility in membrane filtration processes. Biofilms were cultivated on ultrafiltration membranes for 20 and 30 days under high (0.28 bar) and low (0.
View Article and Find Full Text PDFBiofilm formation in membrane systems negatively impacts the filtration system performances. This study evaluated how biofilm compression driven by permeate flow increases the hydraulic resistance and leads to reduction in permeate flux. We analysed the effect of biofilm compression on hydraulic resistance and permeate flux through computational models supported by experimental data.
View Article and Find Full Text PDF