Publications by authors named "Moretta L"

CD3(+)CD56(+) cytokine-induced killer (CIK) cells display a potent cytolytic activity. The adhesion molecule lymphocyte function-associated antigen-1 plays a crucial role in binding as well as in cytolytic activity of CIK cells against tumor target cells expressing the corresponding ligands. CIK cells express activating natural killer (NK) receptors, including NKG2D, DNAX accessory molecule-1 (DNAM-1), and low levels of NKp30.

View Article and Find Full Text PDF

Specific NK cell killer inhibitory receptor (KIR):HLA haplotype combinations have been associated with successful clearance of acute and chronic HCV infection. Whether an imbalance of activating NK cell receptors also contributes to the outcome of treatment of chronic HCV infection, however, is not known. We studied peripheral NK cell phenotype and function in 28 chronically viraemic HCV genotype I treatment-naïve patients who underwent treatment with pegylated IFN-α and ribavirin.

View Article and Find Full Text PDF

Natural killer cells are important players of the innate immunity. In humans, they express HLA-class I-specific inhibitory receptors including the allotypic-specific KIR and various activating receptors. In most instances, in an autologous setting NK cells do not kill self cells.

View Article and Find Full Text PDF

In allogeneic HSCT, NK-cell alloreactivity is determined by the presence in the donor of NK cells expressing inhibitory killer cell Ig-like receptors (KIRs) that recognize HLA class I allotypes present in the donor but lacking in the recipient. Dominant KIR ligands are the C1 and C2 epitopes of HLA-C. All HLA-C allotypes have either the C1 epitope, the ligand for KIR2DL2/L3, or the C2 epitope, the ligand for KIR2DL1/S1.

View Article and Find Full Text PDF

Background: Mutations of UNC13D are causative for familial haemophagocytic lymphohistiocytosis type 3 (FHL3; OMIM 608898).

Objective: To carry out a genotype-phenotype study of patients with FHL3.

Methods: A consortium of three countries pooled data on presenting features and mutations from individual patients with biallelic UNC13D mutations in a common database.

View Article and Find Full Text PDF

Natural killer (NK) cells are the main lymphoid population in the maternal decidua during the first trimester of pregnancy. Decidual NK (dNK) cells display a unique functional profile and play a key role in promoting tissue remodeling, neoangiogenesis, and immune modulation. However, little information exists on their origin and development.

View Article and Find Full Text PDF

Long-term side effects may represent a relevant burden of antiretroviral treatment (ART) in HIV-infected patients with good CD4 immune reconstitution over extended time spans. CD4-guided treatment interruption (TI) has been evaluated to address this point and may result in a wide spectrum of time off ART in different patient cohorts. We studied whether differences in innate immune responses, in particular NK cells, are associated to patterns of longer (LoTI) or a shorter (ShTI) TI.

View Article and Find Full Text PDF

The two major functions of human natural killer (NK) cells are conventionally associated with distinct cell subsets. Thus, cytolytic activity is mostly confined to the CD56(dim)CD16(+) subset, whereas cytokine production is generally assigned to CD56(bright)CD16(+/-) cells. In this study, we reevaluated the functional capabilities of these NK subsets with regard to the production of IFN-γ at different time points after cell triggering via NKp46 and NKp30 activating receptors.

View Article and Find Full Text PDF

The cross-talk among cells of the innate immunity can greatly affect both innate and adaptive responses. Here we analyzed the molecular interactions between human natural killer (NK) cells and autologous macrophages. Activated NK cells killed M0 and M2, whereas M1 macrophages were more resistant to lysis because of their higher expression of HLA class I molecules.

View Article and Find Full Text PDF

Natural killer (NK) cells are key members of the innate immune system. In a self-environment, they sense and kill target cells lacking major histocompatibility complex class I molecules and release various cytokines on activation. The discovery of human leukocyte antigen (HLA) class I specific inhibitory receptors (including the allotype-specific killer immunoglobulin-like receptors), and of various activating receptors and their ligands, provided the basis for understanding the molecular mechanism of NK-cell activation and function, mainly resulting from the balance between activating and inhibitory signals.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule of limited sequence variability that is expressed by most tissues albeit at low levels. HLA-E has been first described as the ligand of CD94/NKG2 receptors expressed mainly by natural killer (NK) cells, thus confining its role to the regulation of NK-cell function. However, recent evidences obtained by our and other groups indicate that HLA-E complexed with peptides can interact with alphabeta T-cell receptor (TCR) expressed on CD8(+) T cells.

View Article and Find Full Text PDF

Killer Ig-like receptors (KIRs) are human natural killer (NK) receptors that recognize allotypic determinants of human leukocyte antigen (HLA) class I. Inhibitory KIRs discriminate normal cells from tumour or virus-infected cells that have lost or reduced HLA class I expression. Donor NK cell "alloeffector" responses are exploited in haploidentical haematopoietic stem cell transplantation to treat leukaemia.

View Article and Find Full Text PDF

Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4(+) naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are thought to play a major role in pregnancy by inhibiting the maternal immune system and preventing fetal rejection. In decidual tissues, NK cells (dNK) reside in close contact with particular myelomonocytic CD14(+) (dCD14(+)) cells. Here we show that the interaction between dNK and dCD14(+) cells results in induction of Tregs.

View Article and Find Full Text PDF

In humans, recent clinical and experimental data from hematopoietic stem cell transplantation revealed that donor-derived alloreactive NK cells exert a beneficial graft versus leukemia effect. The existence of donor-derived alloreactive NK cells can be predicted on the basis of donor killer cell Ig-like receptor (KIR) gene profile and HLA class I typing of both donor and recipient. Moreover, the size of the alloreactive NK cell population can be directly assessed by the combined use of anti-KIR-specific mAb.

View Article and Find Full Text PDF

Objective: Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent cells characterized by immunomodulatory properties and are therefore considered a promising tool for the treatment of immune-mediated diseases. This study was undertaken to assess the influence of murine BM-MSCs on the activation of B cells in (NZB × NZW)F(1) mice as an animal model of systemic lupus erythematosus (SLE).

Methods: We evaluated the in vitro effects of BM-MSCs on the proliferation and differentiation to plasma cells of splenic mature B cell subsets, namely follicular and marginal zone B cells isolated from (NZB × NZW)F(1) mice.

View Article and Find Full Text PDF

HIV-1 infection in humans results in an early and progressive NK cell dysfunction and an accumulation of an "anergic" CD56- CD16+ NK subset, which is characterised by low natural cytotoxicity receptor expression and low cytokine producing capacity. In contrast to humans, chimpanzee NK cells do not display a distinguishable CD56(bright) and CD56(dim) subset but, as shown here, could be subdivided into functionally different CD8+ and CD8- subsets. The CD8+ NK cells expressed significantly higher levels of triggering receptors including NKp46 and, upon in vitro activation, produced more IFN-gamma, TNF-alpha and CD107 than their CD8- counterparts.

View Article and Find Full Text PDF

Human natural killer (NK) cells express Toll-like receptor 9 (TLR9) transcript and, upon exposure to microbial CpG oligodeoxynucleotide (ODN), release cytokines and kill target cells. Here we show that NK cell treatment with CpG ODN results in down-modulation of KIR3DL2 inhibitory receptor from the cell surface and in its cointernalization with CpG ODN. CpG ODN-induced interferon-γ (IFN-γ) release is mostly confined to KIR3DL2(+) NK cells, thus suggesting a crucial role of KIR3DL2 in CpG ODN-mediated NK responses.

View Article and Find Full Text PDF

Natural killer cells have been demonstrated to play a major role in mediating an anti-leukemia effect in patients given a T-cell depleted allogeneic hematopoietic stem cell transplantation from an HLA-haploidentical family donor. In particular, donor-derived natural killer cells, which are alloreactive (i.e.

View Article and Find Full Text PDF

Natural killer (NK) cells, a major cell type of the innate immunity, express surface receptors that regulate potent effector functions such as cytolytic activity and release of cytokines playing a central role in inflammatory response and immunoregulation. In this contribution, we briefly outline the major steps from the discovery of human leukocyte antigen (HLA)-class I-specific inhibitory receptors in humans to recent successful clinical applications in the cure of high-risk leukemias both in adults and in pediatric patients. A central role is played by 'alloreactive' NK cells originated from donor's CD 34(+) cells in eradicating leukemic cells in the setting of T-cell-depleted haploidentical hemopoietic stem cell transplantation.

View Article and Find Full Text PDF

Background: Despite Natural Killer (NK) cells were originally defined as effectors of spontaneous cytotoxicity against tumors, extremely limited information is so far available in humans on their capability of killing cancer cells in an autologous setting.

Methodology/principal Findings: We have established a series of primary melanoma cell lines from surgically resected specimens and here showed that human melanoma cells were highly susceptible to lysis by activated autologous NK cells. A variety of NK cell activating receptors were involved in killing: particularly, DNAM-1 and NKp46 were the most frequently involved.

View Article and Find Full Text PDF

Although the role of the tumor microenvironment in the process of cancer progression has been extensively investigated, the contribution of different stromal components to tumor growth and/or evasion from immune surveillance is still only partially defined. In this study we analyzed fibroblasts derived from metastatic melanomas and provide evidence for their strong immunosuppressive activity. In coculture experiments, melanoma-derived fibroblasts sharply interfered with NK cell functions including cytotoxicity and cytokine production.

View Article and Find Full Text PDF

In humans, major histocompatibility complex (MHC) class I molecules comprise the classical (class Ia) human leukocyte antigens (HLA)-A, -B, and -C, and the non-classical (class Ib) HLA-E, -F, -G and -H (HFE) molecules. The best-characterized MHC class Ib molecule is HLA-E. HLA-E was first described as a non-polymorphic ligand of the CD94/NKG2 receptors expressed mainly by natural killer (NK) cells and its role was thus confined to the regulation of NK cell function.

View Article and Find Full Text PDF