Publications by authors named "Morest D"

Many neurons degenerate after injuries resulting from overstimulation, drugs, genetic mutations, and aging. Although several growth factors and neurotrophins delay degeneration and promote regrowth of neural processes, the role of fibroblast growth factor 8 (FGF8) in mammalian spiral ganglion neurons (SGN) neurite outgrowth has not been examined. This study develops and uses SGN cell cultures suitable for experimental analysis, it investigates whether FGF8a and FGF8b isoforms affect the neurite outgrowth from SGN cultured in vitro.

View Article and Find Full Text PDF

To study the mechanisms of noise-induced hearing loss and the phantom noise, or tinnitus, often associated with it, we used a mouse model of noise damage designed for reproducible and quantitative structural analyses. We selected the posteroventral cochlear nucleus, which has shown considerable plasticity in past studies, and correlated its changes with the distribution of neurotrophin 3 (NT3). We used volume change, optical density analysis, and microscopic cluster analysis to measure the degeneration after noise exposure.

View Article and Find Full Text PDF

In the developing nervous system, neurotrophin 3 (NT3) and brain-derived neurotrophic factor (BDNF) have been shown to interact with each other and with different parts of a neuron or glia and over considerable distances in time and space. The auditory system provides a useful model for analyzing these events, insofar as it is subdivided into well-defined groups of specific neuronal types that are readily related to each other at each stage of development. Previous work in our laboratory suggested that NT3 and its receptor TrkC in the mouse cochlear nucleus (CN) may be involved in directing neuronal migration and initial targeting of inputs from cochlear nerve axons in the embryo.

View Article and Find Full Text PDF

Hearing loss has been attributed to many factors, including degeneration of sensory neurons in the auditory pathway and demyelination along the cochlear nerve. Fibroblast growth factors (FGFs), which signal through four receptors (Fgfrs), are produced by auditory neurons and play a key role in embryonic development of the cochlea and in neuroprotection against sound-induced injury. However, the role of FGF signaling in the maintenance of normal auditory function in adult and aging mice remains to be elucidated.

View Article and Find Full Text PDF

Hypothesis: Intratympanic (IT) application of dexamethasone will reduce ototoxicity associated with systemic cisplatin therapy.

Background: Cisplatin is a common chemotherapeutic drug often dose-limited by ototoxicity attributed to the formation of reactive oxygen and nitrogen species damaging critical inner ear structures. Steroids have been shown to reduce formation of reactive oxygen species and thus may reduce ototoxicity.

View Article and Find Full Text PDF

A growth factor may have different actions depending on developmental stage. We investigated this phenomenon in the interactions of fibroblast growth factor 2 (FGF2) and neurotrophins on cochlear ganglion (CG) development. The portions of the otocyst fated to form the CG and cochlear epithelium were cocultured at embryonic day 11 (E11).

View Article and Find Full Text PDF

In adult mammals a single exposure to loud noise can damage cochlear hair cells and initiate subsequent episodes of degeneration of axonal endings in the cochlear nucleus (CN). Possible mechanisms are loss of trophic support and/or excitotoxicity. Fibroblast growth factor 2 (FGF2), important for development, might be involved in either mechanism.

View Article and Find Full Text PDF

Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence.

View Article and Find Full Text PDF

The potassium channel protein, Kv3.1, is abundantly expressed in the chick auditory pathway. Its b-isoform is found in nucleus magnocellularis, which receives the cochlear input, both before and after the establishment of synaptic connections.

View Article and Find Full Text PDF

Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus.

View Article and Find Full Text PDF

The origin of the action potential in the cochlea has been a long-standing puzzle. Because voltage-dependent Na+ (Nav) channels are essential for action potential generation, we investigated the detailed distribution of Nav1.6 and Nav1.

View Article and Find Full Text PDF

Analyses of the effect of ryanodine in vertebrate brain slices have led to the conclusion that presynaptic ryanodine receptors (RYRs) may have several functions in synaptic release, including causing large-amplitude miniature postsynaptic currents (mPSCs) by promoting concerted multivesicular release. However, the role of RYRs in synaptic release is controversial. To better understand the role of RYRs in synaptic release, we analyzed the effect of RYR mutation on mPSCs and evoked postsynaptic currents (ePSCs) at the Caenorhabditis elegans neuromuscular junction (NMJ).

View Article and Find Full Text PDF

The main ascending, excitatory pathway from the cochlea undergoes synaptic interruption in the dorsal and ventral cochlear nuclei. The dorsal cochlear nucleus also forms a feed-forward circuit, which receives cochlear input and projects to the ventral cochlear nucleus by a tuberculo-ventral tract. This circuit may provide an inhibitory fringe (side bands) surrounding the center bands of the main ascending pathway.

View Article and Find Full Text PDF

The publication of a paper entitled "Direct transdifferentiation gives rise to the earliest new hair cells in regenerating avian auditory epithelium" in the Journal of Neuroscience Research offers the opportunity to call attention to a well-developed line of research on the auditory receptor of birds, which should be of interest to students of regeneration and plasticity of the mature nervous system in higher vertebrates, including mammals. Although hair cell proliferation normally stops before hatching, destruction of the auditory receptors of the chicken may be followed by complete regeneration of hair cells. Most of the new hair cells arise from a new wave of proliferation, but Roberson et al.

View Article and Find Full Text PDF

To determine if acoustic overstimulation altered synaptic connections in the cochlear nucleus, anesthetized adult chinchillas, with one ear protected by a silicone plug, were exposed for 3 hr to a 108-dB octave-band noise, centered at 4 kHz, and allowed to survive for periods up to 32 weeks. This exposure led to cochlear damage in the unprotected ear, mainly in the basal regions of the organ of Corti. The anterior part of the ipsilateral posteroventral cochlear nucleus consistently contained a band of degenerating axons and terminals, in which electron microscopic analysis revealed substantial losses of axons and synaptic terminals with excitatory and inhibitory cytology.

View Article and Find Full Text PDF

The companion study showed that acoustic overstimulation of adult chinchillas, with a noise level sufficient to damage the cochlea, led to cytological changes and degeneration of synaptic endings in the cochlear nucleus within 1-16 weeks. In the present study, the same stimulus was used to study the long-term effects on the fine structure of synaptic endings in the cochlear nucleus. For periods of 6 and 8 months after a single exposure to a damaging noise level, there ensued a chronic, continuing process of neurodegeneration involving excitatory and inhibitory synaptic endings.

View Article and Find Full Text PDF

To study plastic changes in the cochlear nucleus after acoustic stimulation, adult chinchillas were exposed once to a 4-kHz octave-band noise at 108 dB SPL for 3 hr. After survival times of 1, 2, 4, 8, and 16 weeks, samples were taken for electron microscopy from a part of the cochlear nucleus, where cochlear nerve fibers degenerated after the noise exposure. Progressive changes in fine structure were characterized as early, intermediate, and late stages of degeneration.

View Article and Find Full Text PDF

High densities of sodium channels at nodes of Ranvier permit action potential conduction and depend on betaIV spectrins, a family of scaffolding proteins linked to the cortical actin cytoskeleton. To investigate the molecular organization of nodes, we analyzed qv(3J)"quivering" mice, whose betaIV spectrins have a truncated proline-rich "specific" domain (SD) and lack the pleckstrin homology (PH) domain. Central nodes of qv(3J) mice, which lack betaIV spectrins, are significantly broader and have prominent vesicle-filled nodal membrane protrusions, whereas axon shape and neurofilament density are dramatically altered.

View Article and Find Full Text PDF

Neurons, neuroglia (astrocytes and oligodendrocytes), and ependymal cells are three distinct categories of neural cells in the central nervous system. In the mature brain and spinal cord, the classical histological criteria define these cells by their microscopic structure very well. During development, the precursors for all of these cells reside within the epithelium of the neural plate and its successor, the neural tube.

View Article and Find Full Text PDF

Synaptic nests are closely packed collections of synaptic endings. Nests may be deficient in the glial processes which usually separate terminals in the CNS and which transport much of the glutamate associated with high levels of excitatory activity. We hypothesized that nests might lack glial glutamate transporters, but possibly would conserve neuronal glutamate transporter.

View Article and Find Full Text PDF

In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid.

View Article and Find Full Text PDF

Chinchillas are notable for a low-frequency hearing range similar to that of humans and a marked sensitivity to loud noise. A single noise exposure that produces cochlear damage may lead to progressive loss of synaptic endings in the cochlear nucleus, followed by new axonal growth. As an index of synaptic regulation during such changes, we have examined the expression of a synaptic vesicle protein, synaptophysin, in the cochlear nucleus following a damaging acoustic stimulus in adult chinchillas.

View Article and Find Full Text PDF

To see if fibroblast growth factors (FGFs) might function in the central changes following auditory overstimulation we tracked immunostaining in the cochlear nucleus of adult mice with monoclonal antibodies to FGFs (FGF-1, FGF-2) and FGF receptor. After exposure nearly all outer hair cells died, while inner hair cell and fiber loss were restricted to a region midway along the cochlear spiral. FGFs staining in the cochlear nucleus appeared in hypertrophied astrocytes in the regions of nerve fiber degeneration only.

View Article and Find Full Text PDF

We studied the interactions of neurotrophin-3 (NT3) with brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2), and their effects on tyrosine kinase C (TrkC) expression during cochlear ganglion development. Otocysts were explanted from white leghorn chicken embryos at stages when the neuronal precursors normally start to migrate. Cultures were fed with various combinations of NT3, BDNF, and FGF-2.

View Article and Find Full Text PDF

Kv3.1, a voltage-dependent potassium channel, has two forms, -a and -b, which differ in expression during development and at the onset of function in the auditory system. To determine whether cochlear nerve input could affect the expression of these two forms, cultures of the developing cochlear nucleus were explanted in the absence of the cochlear nerve at the beginning of cell migration (Hamburger-Hamilton stage 28-30), while neuroblasts continued to migrate onto the culture substrate.

View Article and Find Full Text PDF