Publications by authors named "Morera S"

Cytokinin oxidase/dehydrogenase (CKX) inhibitors reduce the degradation of cytokinins in plants and thereby may improve the efficiency of agriculture and plant tissue culture-based practices. Here, we report a synthesis and structure-activity relationship study of novel urea derivatives concerning their CKX inhibitory activity. The most active compounds showed sub-nanomolar IC50 values with maize ZmCKX1, the lowest value yet documented.

View Article and Find Full Text PDF

Plants genetically modified by the pathogenic Agrobacterium strain C58 synthesize agrocinopines A and B, whereas those modified by the pathogenic strain Bo542 produce agrocinopines C and D. The four agrocinopines (A, B, C and D) serve as nutrients by agrobacteria and signaling molecule for the dissemination of virulence genes. They share the uncommon pyranose-2-phosphate motif, represented by the l-arabinopyranose moiety in agrocinopines A/B and the d-glucopyranose moiety in agrocinopines C/D, also found in the antibiotic agrocin 84.

View Article and Find Full Text PDF

Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine.

View Article and Find Full Text PDF

Spray-dried animal plasma (SDAP) and wheat gluten (WG) are common binders in wet pet food that provide amino acids and energy, as well as texture and cohesiveness due to their gelling strength, water retention and fat emulsion properties. Binder use is a valuable tool especially in recipes based on ingredients with low technological properties such as fish by-products containing spines and scales and soft texture after cooking. Two basal recipes for chunks in gravy were produced to evaluate experimental treatments.

View Article and Find Full Text PDF

Phazolicin (PHZ) is a peptide antibiotic exhibiting narrow-spectrum activity against rhizobia closely related to its producer, sp. strain Pop5. Here, we show that the frequency of spontaneous PHZ-resistant mutants in Sinorhizobium meliloti is below the detection limit.

View Article and Find Full Text PDF

Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N -acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N-AcetylTransferase Activity).

View Article and Find Full Text PDF

Due to the growing awareness about the environmental and economic sustainability of food products, the present research aims to evaluate the sustainability of fresh-cut and pre-cooked vegetables, a niche market with growing demand. An analysis was carried out using a detailed material, energy, and economic inventory based on a commercial food processing plant located in northeast Spain. The environmental sustainability was determined using process-based environmental life cycle assessment (E-LCA), applying a cradle-to-market approach, and using the EF3.

View Article and Find Full Text PDF

Atmospheric nuclear tests (1945-1980) have led to radioactive fallout across the globe. French tests in Polynesia (1966-1974) may influence the signature of fallout in South America in addition to those conducted by USA and former USSR until 1963 in the Northern hemisphere. Here, we compiled the Pu/Pu atom ratios reported for soils of South America and conducted additional measurements to examine their latitudinal distributions across this continent.

View Article and Find Full Text PDF

Iron is an essential nutrient in bacteria. Its ferrous form, mostly present in low oxygen and acidic pH environments, can be imported using the specific Ftr-type transport system, which encompasses the conserved FtrABCD system found in pathogenic bacteria such as Bordetella, Brucella and Burkholderia. The nonpathogenicity and versatile metabolism of Rubrivivax gelatinosus make it an ideal model to study the FtrABCD system.

View Article and Find Full Text PDF

A central issue in modern cities is providing inclusive transportation services for people with reduced mobility. In particular, Barcelona is offering a public door-to-door pickup transportation service complementary to the adapted regular public transport. In this work, we apply descriptive analytics to provide a detailed picture of the service by introducing and analyzing a new dataset related to this transportation service.

View Article and Find Full Text PDF

A species-specific region, denoted SpG8-1b allowing hydroxycinnamic acids (HCAs) degradation is important for the transition between the two lifestyles (rhizospheric versus pathogenic) of the plant pathogen Agrobacterium fabrum. Indeed, HCAs can be either used as trophic resources and/or as induced-virulence molecules. The SpG8-1b region is regulated by two transcriptional regulators, namely, HcaR (Atu1422) and Atu1419.

View Article and Find Full Text PDF

Increasing crop productivity is our major challenge if we are to meet global needs for food, fodder and fuel. Controlling the content of the plant hormone cytokinin is a method of improving plant productivity. Cytokinin oxidase/dehydrogenase (CKO/CKX) is a major target in this regard because it degrades cytokinins.

View Article and Find Full Text PDF

Agrobacterium tumefaciens pathogens use specific compounds denoted opines as nutrients in their plant tumor niche. These opines are produced by the host plant cells genetically modified by agrobacteria. They are imported into bacteria via solute-binding proteins (SBPs) in association with ATP-binding cassette transporters.

View Article and Find Full Text PDF

Pseudomonas aeruginosa secretes pyoverdine, a major siderophore to get access to iron, an essential nutrient. Pyoverdine scavenges ferric iron in the bacterial environment with the resulting complex internalized by bacteria. Releasing of iron from pyoverdine in the periplasm involves an iron reduction by an inner membrane reductase and two solute-binding proteins (SBPs) FpvC and FpvF in association with their ABC transporter.

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)-dependent enzymes, which detoxify aldehydes produced in various metabolic pathways to the corresponding carboxylic acids. Among the 19 human ALDHs, the cytosolic ALDH9A1 has so far never been fully enzymatically characterized and its structure is still unknown. Here, we report complete molecular and kinetic properties of human ALDH9A1 as well as three crystal forms at 2.

View Article and Find Full Text PDF

The first non-natural derivative of the rare d-glucose-2-phosphate (G2P), namely glucose-2-(O-lactic acid phosphate) (G2LP), has been synthesized. When used as sole carbon source, G2LP enables bacterial growth of the plant pathogenic strain Agrobacterium fabrum C58 (formerly referred to as Agrobacterium tumefaciens). X-ray crystallography and affinity measurements investigations reveal that G2LP binds the periplasmic binding protein (PBP) AccA similarly to the natural compounds and with the same affinity.

View Article and Find Full Text PDF

Heterokonts, Alveolata protists, green algae from Charophyta and Chlorophyta divisions, and all Embryophyta plants possess an aldehyde dehydrogenase (ALDH) gene named ALDH12. Here, we provide a biochemical characterization of two ALDH12 family members from the lower plant Physcomitrella patens and higher plant Zea mays. We show that ALDH12 encodes an NAD-dependent glutamate γ-semialdehyde dehydrogenase (GSALDH), which irreversibly converts glutamate γ-semialdehyde (GSAL), a mitochondrial intermediate of the proline and arginine catabolism, to glutamate.

View Article and Find Full Text PDF

pathogens genetically modify their host plants to drive the synthesis of opines in plant tumors. The mannityl-opine family encompasses mannopine, mannopinic acid, agropine and agropinic acid. These opines serve as nutrients and are imported into bacteria via periplasmic-binding proteins (PBPs) in association with ABC transporters.

View Article and Find Full Text PDF

The bacterial plant pathogen uses periplasmic-binding proteins (PBPs) along with ABC transporters to import a wide variety of plant molecules as nutrients. Nonetheless, how acquires plant metabolites is incompletely understood. Using genetic approaches and affinity measurements, we identified here the PBP MelB and its transporter as being responsible for the uptake of the raffinose family of oligosaccharides (RFO), which are the most widespread d-galactose-containing oligosaccharides in higher plants.

View Article and Find Full Text PDF

Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle).

View Article and Find Full Text PDF

Agrobacterium pathogens of octopine- and nopaline-types force host plants to produce either octopine or nopaline compounds, which they use as nutrients. Two Agrobacterium ABC-transporters and their cognate periplasmic binding proteins (PBPs) OccJ and NocT import octopine and nopaline/octopine, respectively. Here, we show that both octopine transport and degradation confer a selective advantage to octopine-type A.

View Article and Find Full Text PDF

Climate change is considered as one of the main factors controlling sediment fluxes in mountain belts. However, the effect of El Niño, which represents the primary cause of inter-annual climate variability in the South Pacific, on river erosion and sediment transport in the Western Andes remains unclear. Using an unpublished dataset of Suspended Sediment Yield (SSY) in Peru (1968-2012), we show that the annual SSY increases by 3-60 times during Extreme El Niño Events (EENE) compared to normal years.

View Article and Find Full Text PDF

Lower plant species including some green algae, non-vascular plants (bryophytes) as well as the oldest vascular plants (lycopods) and ferns (monilophytes) possess a unique aldehyde dehydrogenase (ALDH) gene named ALDH21, which is upregulated during dehydration. However, the gene is absent in flowering plants. Here, we show that ALDH21 from the moss Physcomitrella patens codes for a tetrameric NADP -dependent succinic semialdehyde dehydrogenase (SSALDH), which converts succinic semialdehyde, an intermediate of the γ-aminobutyric acid (GABA) shunt pathway, into succinate in the cytosol.

View Article and Find Full Text PDF

The aim of this work is to quantify the relative contribution to the overall environmental impact of the construction phase compared to the operational phase for a large conventional activated sludge wastewater treatment plant (WWTP). To estimate these environmental impacts, a systematic procedure was designed to obtain the detailed Life Cycle Inventories (LCI) for civil works and equipment, taking as starting point the construction project budget and the list of equipment installed at the Girona WWTP, which are the most reliable information sources of materials and resources used during the construction phase. A detailed inventory is conducted by including 45 materials for civil works and 1,240 devices for the equipment.

View Article and Find Full Text PDF

We investigated the molecular and ecological mechanisms involved in niche expansion, or generalism, versus specialization in sympatric plant pathogens. Nopaline-type and octopine-type Agrobacterium tumefaciens engineer distinct niches in their plant hosts that provide different nutrients: nopaline or octopine, respectively. Previous studies revealed that nopaline-type pathogens may expand their niche to also assimilate octopine in the presence of nopaline, but consequences of this phenomenon on pathogen dynamics in planta were not known.

View Article and Find Full Text PDF