Drought is one of the major abiotic stresses causing severe damage and losses in economically important crops worldwide. Drought decreases the plant water status, leading to a disruptive metabolic reprogramming that negatively affects plant growth and yield. Seaweed extract-based biostimulants show potential as a sustainable strategy for improved crop health and stress resilience.
View Article and Find Full Text PDFThe effects of global warming have increasingly led to devastating environmental stresses, such as heat, salinity, and drought. Soil salinization is a serious environmental issue and results in detrimental abiotic stress, affecting 7% of land area and 33% of irrigated lands worldwide. The proportion of arable land facing salinity is expected to rise due to increasing climate change fuelled by anthropogenic activities, exacerbating the threat to global food security for the exponentially growing populace.
View Article and Find Full Text PDFPlants are constantly challenged by changing environmental conditions that include abiotic stresses. These are limiting their development and productivity and are subsequently threatening our food security, especially when considering the pressure of the increasing global population. Thus, there is an urgent need for the next generation of crops with high productivity and resilience to climate change.
View Article and Find Full Text PDFLipopolysaccharides (LPSs) are microbe-associated molecular pattern molecules (MAMPs) from Gram-negative bacterial pathogens that potentially contain three different MAMPs (the O-polysaccharide chain, the oligosaccharide core and lipid A). LPSs was purified from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris and electrophoretically profiled. Outcomes of the interactions of the three different LPS chemotypes with Arabidopsis thaliana, as reflected in the induced defence metabolites, profiled at 12 h and 24 h post elicitation, were investigated.
View Article and Find Full Text PDF