Publications by authors named "Morein S"

Class 1 cases are usually considered straightforward, with treatment durations shorter than those of Class 2 and Class 3, but in some Class 1 patients, specific complications lengthen and complicate treatment. Three cases are analyzed, each with different abnormalities. Treatment methods are demonstrated that achieve a pleasing profile without extraction.

View Article and Find Full Text PDF

Three patients are analyzed with multiple diagnostic techniques. The Tip-Edge technique is a combination of the mechanics of Begg and an improvement modification of the Edgewise bracket. It is shown to be advantageous in meeting esthetic objectives.

View Article and Find Full Text PDF

Lipid lateral diffusion coefficients have been directly determined by pulsed field gradient NMR spectroscopy on macroscopically aligned, fully hydrated lamellar phases containing dimyristoylphosphatidylcholine and total lipid extracts from Acholeplasma laidlawii and Escherichia coli. The temperature dependence of the diffusion coefficient was of the Arrhenius type in the temperature interval studied. The sharp increase in the diffusion coefficient at the growth temperature of E.

View Article and Find Full Text PDF

31P NMR spectroscopy was used to investigate the effects of transmembrane alpha-helical peptides with different flanking residues on the phase behavior of phosphatidylethanolamine and phosphatidylethanolamine/phosphatidylglycerol (molar ratio 7:3) model membranes. It was found that tryptophan-flanked (WALP) peptides and lysine-flanked (KALP) peptides both promote formation of nonlamellar phases in these lipid systems in a mismatch-dependent manner. Based on this mismatch dependence, it was concluded that the effective hydrophobic length of KALP peptides is considerably shorter than that of the corresponding WALP peptides.

View Article and Find Full Text PDF

A combined experimental and theoretical study was performed on a series of mixtures of dipalmitoylphosphatidylcholine (DPPC) and synthetic peptides to investigate their thermotropic behavior and lateral organization. The experimental study was based on differential scanning calorimetry (DSC) and phosphorous nuclear magnetic resonance ((31)P-NMR) techniques; the theoretical study was based on calculations on a microscopic molecular interaction model, where the lipid-peptide interaction is built on the hydrophobic matching principle. The chosen peptides, WALP and KALP, consist of a hydrophobic stretch, of variable length, of alternating leucine and alanine residues, flanked on both ends with tryptophan and lysine residues, respectively.

View Article and Find Full Text PDF

Tryptophans have a high affinity for the membrane-water interface and have been suggested to play a role in determining the topology of membrane proteins. We investigated this potential role experimentally, using mutants of the single-spanning Pf3 coat protein, whose transmembrane topologies are sensitive to small changes in amino acid sequence. Mutants were constructed with varying numbers of tryptophans flanking the transmembrane region and translocation was assessed by an in vitro translation/translocation system.

View Article and Find Full Text PDF

The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphatidylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by (31)P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at approximately 60 degrees C.

View Article and Find Full Text PDF

To better understand the mutual interactions between lipids and membrane-spanning peptides, we investigated the effects of tryptophan-anchored hydrophobic peptides of various lengths on the phase behavior of 1,2-dielaidoylphosphatidylethanolamine (DEPE) dispersions, using (31)P nuclear magnetic resonance and small-angle X-ray diffraction. Designed alpha-helical transmembrane peptides (WALPn peptides, with n being the total number of amino acids) with a hydrophobic sequence of leucine and alanine of varying length, bordered at both ends by two tryptophan membrane anchors, were used as model peptides and were effective at low concentrations in DEPE. Incorporation of 2 mol % of relatively short peptides (WALP14-17) lowered the inverted hexagonal phase transition temperature (T(H)) of DEPE, with an efficiency that seemed to be independent of the extent of hydrophobic mismatch.

View Article and Find Full Text PDF

The extent to which the length of the membrane-spanning part of intrinsic membrane proteins matches the hydrophobic thickness of the lipid bilayer may be an important factor in determining membrane structure and function. To gain insight into the consequences of hydrophobic mismatch on a molecular level, we have carried out systematic studies on well-defined peptide-lipid complexes. As model peptides we have chosen gramicidin A and a series of artificial hydrophobic alpha-helical transmembrane peptides that resemble the gramicidin channel.

View Article and Find Full Text PDF

The effect of solubilized hydrophobic peptides on the phase behavior of dioleoylphosphatidylcholine (DOPC)/water system was studied by 2H- and 31P-NMR spectroscopy and by x-ray diffraction, and partial phase diagrams were constructed. The utilized peptides were HCO-AWW(LA)5WWA-NHCH2CH2OH (WALP16), which is an artificial peptide designed to resemble a transmembrane part of a membrane protein; and VEYAGIALFFVAAVLTLWSMLQYLSAAR (Pgs peptide E), a peptide that is identical to one of the putative transmembrane segments of the membrane-associated protein phosphatidylglycerophosphate synthase (Pgs) in Escherichia coli. Circular dichroism spectroscopy suggests that both peptides are mostly alpha-helical in DOPC vesicles.

View Article and Find Full Text PDF

Two 28-residue peptides, PTLLTLFRVILIPFFVLVFYKKKGKKKG [Pgs-(6-25)-peptidyl-KKKGKKKG; Pgs peptide A] and VEYAGIALFFVAAVLTLWSMLQYLSAAR [Pgs-(149-176)-peptide, Pgs peptide E], were synthesized and studied by CD and two-dimensional 1H-NMR spectroscopy. The first 20 amino acid residues of Pgs peptide A are identical to one predicted transmembrane segment (Pro6-Tyr25) of the integral membrane protein phosphatidylglycerophosphate synthase (Pgs) of Escherichia coli. Pgs peptide E is identical to another predicted transmembrane segment (Val149-Arg176), which is located in the C-terminal end of this lipid synthase.

View Article and Find Full Text PDF

Escherichia coli strain K12 was grown at 17, 27, and 37 degrees C. The acyl chain composition of the membrane lipids varied with the growth temperature; the fraction of cis-vaccenoyl chains decreased, and the fraction of palmitoyl chains increased, when the growth temperature was increased. However, the polar head group composition did not change significantly.

View Article and Find Full Text PDF

A rapid and simple method for separating and isolating the inner and outer membranes of Escherichia coli is described. Membrane vesicles were prepared either by passing the bacteria through a French press or by conversion of the cells to spheroplasts by the lysozyme-EDTA treatment and disruption of the spheroplasts by sonication. The membrane vesicles were collected by ultracentrifugation and suspended in a Percoll-containing buffer.

View Article and Find Full Text PDF

Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C).

View Article and Find Full Text PDF