Reactive oxygen species (ROS) are produced by energy transfer and electron transport in plant chloroplast thylakoids at non-toxic levels under normal growth conditions, but at threatening levels under adverse or fluctuating environmental conditions. Among chloroplast ROS, singlet oxygen and superoxide anion radical, respectively, produced by photosystem II (PSII) and PSI, are known to be the major ROS under several stress conditions. Both are very unlikely to diffuse out of chloroplasts, but they are instead capable of triggering ROS-mediated chloroplast operational retrograde signalling to activate defence gene expression in concert with hormones and other molecular compounds.
View Article and Find Full Text PDFThere is a need to generate improved crop varieties adapted to the ongoing changes in the climate. We studied durum wheat canopy and central metabolism of six different photosynthetic organs in two yield-contrasting varieties. The aim was to understand the mechanisms associated with the water stress response and yield performance.
View Article and Find Full Text PDFThe pool of carbon- and nitrogen-rich metabolites is quantitatively relevant in non-foliar photosynthetic organs during grain filling, which have a better response to water limitation than flag leaves. The response of durum wheat to contrasting water regimes has been extensively studied at leaf and agronomic level in previous studies, but the water stress effects on source-sink dynamics, particularly non-foliar photosynthetic organs, is more limited. Our study aims to investigate the response of different photosynthetic organs to water stress and to quantify the pool of carbon and nitrogen metabolites available for grain filling.
View Article and Find Full Text PDFL. cv. Gazul is a spring wheat widely cultivated in Castilla y León (Spain).
View Article and Find Full Text PDFThe integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain.
View Article and Find Full Text PDFPutrescine (Put) is the starting point of the polyamines (PAs) pathway and the most common PA in higher plants. It is synthesized by two main pathways (from ornithine and arginine), but recently a third pathway from citrulline was reported in sesame plants. There is strong evidence that Put may play a crucial role not only in plant growth and development but also in the tolerance responses to the major stresses affecting crop production.
View Article and Find Full Text PDFA rapid and high throughput protocol to measure the catalase activity in vitro has been designed. Catalase is an enzyme with unusual kinetic properties because it does not follow the standard Michaelis-Menten model and is inactivated by HO. This makes the analysis of the two rate equations of the second-ordered reactions of the kinetic model rather complex.
View Article and Find Full Text PDFGlobal warming will inevitably affect crop development and productivity, increasing uncertainty regarding food production. The exploitation of genotypic variability can be a promising approach for selecting improved crop varieties that can counteract the adverse effects of future climate change. We investigated the natural variation in yield performance under combined elevated CO and high-temperature conditions in a set of 60 bread wheat genotypes (59 of the 8TH HTWSN CIMMYT collection and Gazul).
View Article and Find Full Text PDFThe progressive rise in atmospheric CO concentrations and temperature associated with climate change is predicted to have a major impact on the productivity and quality of food crops. Therefore, food security is highly dependent on climate change. Following a survey with 60 bread wheat genotypes, here we investigated the genetic variation in grain yield and nutritional quality among 10 of these genotypes grown under elevated CO and temperature.
View Article and Find Full Text PDFElevated concentrations of CO (CO) in plants with C photosynthesis metabolism, such as wheat, stimulate photosynthetic rates. However, photosynthesis tends to decrease as a function of exposure to high (CO) due to down-regulation of the photosynthetic machinery, and this phenomenon is defined as photosynthetic acclimation. Considerable efforts are currently done to determine the effect of photosynthetic tissues, such us spike, in grain filling.
View Article and Find Full Text PDFGlobal warming is becoming a significant problem for food security, particularly in the Mediterranean basin. The use of molecular techniques to study gene-level responses to environmental changes in non-model organisms is increasing and may help to improve the mechanistic understanding of durum wheat response to elevated CO and high temperature. With this purpose, we performed transcriptome RNA sequencing (RNA-Seq) analyses combined with physiological and biochemical studies in the flag leaf of plants grown in field chambers at ear emergence.
View Article and Find Full Text PDFThe asymptotes and transition points of the net CO assimilation (A/C) rate curves of the steady-state Farquhar-von Caemmerer-Berry (FvCB) model for leaf photosynthesis of C plants are examined in a theoretical study, which begins from the exploration of the standard equations of hyperbolae after rotating the coordinate system. The analysis of the A/C quadratic equations of the three limitation states of the FvCB model-abbreviated as A, A and A-allows us to conclude that their oblique asymptotes have a common slope that depends only on the mesophyll conductance to CO diffusion (g). The limiting values for the transition points between any two states of the three limitation states c, j and p do not depend on g, and the results are therefore valid for rectangular and non-rectangular hyperbola equations of the FvCB model.
View Article and Find Full Text PDFBalancing of leaf carbohydrates is a key process for maximising crop performance in elevated CO2 environments. With the aim of testing the role of the carbon sink-source relationship under different CO2 conditions, we performed two experiments with two barley genotypes (Harrington and RCSL-89) exposed to changing CO2. In Experiment 1, the genotypes were exposed to 400 and 700 ppm CO2.
View Article and Find Full Text PDFThe use of correlation networks and hierarchical cluster analysis provides a framework to organize and study the coordination of parameters such as genes, metabolites, proteins and physiological parameters. We have analyzed 142 traits from primary C and N metabolism, including biochemical and gene expression analyses, in a range of 32 different growth conditions (various [CO] levels, temperatures, N supplies, growth stages and experimental methods). To test the integration of primary metabolism, particularly under climate change, we investigated which C and N metabolic traits and transcript levels are correlated in durum wheat flag leaves using a correlation network and a hierarchical cluster analysis.
View Article and Find Full Text PDFElevated CO often leads to photosynthetic acclimation, and N availability may alter this response. We investigated whether the coordination of shoot-root N assimilation by elevated CO may help to optimize the whole-plant N allocation and maximize photosynthesis in hydroponically-grown durum wheat at two NO supplies in interaction with plant development. Transcriptional and biochemical analyses were performed on flag leaves and roots.
View Article and Find Full Text PDFPlants have evolved effective mechanisms to avoid or reduce the potential damage caused by abiotic stresses. In addition to biocontrol abilities, genus fungi promote growth and alleviate the adverse effects caused by saline stress in plants. Morphological, physiological, and molecular changes were analyzed in salt-stressed tomato plants grown under greenhouse conditions in order to investigate the effects of chemical and biological fertilizations.
View Article and Find Full Text PDFElevated [CO] (eCO) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO, the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO] with low (LN) and high (HN) [Formula: see text] supply.
View Article and Find Full Text PDFChemical mutagenesis induces variations that may assist in the identification of targets for adaptation to growth under atmospheric CO2 enrichment. The aim of this work was to characterize the limitations causing reduced photosynthetic capacity in G132 mutagenized barley (Hordeum vulgare L. cv.
View Article and Find Full Text PDFThe mechanisms of stomatal sensitivity to CO2 are yet to be fully understood. The role of photosynthetic and non-photosynthetic factors in stomatal responses to CO2 was investigated in wild-type barley (Hordeum vulgare var. Graphic) and in a mutant (G132) with decreased photochemical and Rubisco capacities.
View Article and Find Full Text PDFTo investigate whether the transcriptional response to carbon (C) depletion and sucrose resupply depends on the duration and severity of the C depletion, Arabidopsis seedlings were grown in liquid culture and harvested 3, 6, 12, 24, 48 and 72 h after removing sucrose from the medium and 30 min after resupplying sucrose at each time. Expression profiling revealed early transcriptional inhibition of cell wall synthesis and remodelling of signalling, followed by induction of C recycling and photosynthesis and general inhibition of growth. The temporal sequence differed from the published response to progressive exhaustion of C during a night and extended night in vegetatively growing plants.
View Article and Find Full Text PDFOnly limited public transcriptomics resources are available for durum wheat and its responses to environmental changes. We developed a quantitative reverse transcription-PCR (qRT-PCR) platform for analysing the expression of primary C and N metabolism genes in durum wheat in leaves (125 genes) and roots (38 genes), based on available bread wheat genes and the identification of orthologs of known genes in other species. We also assessed the expression stability of seven reference genes for qRT-PCR under varying environments.
View Article and Find Full Text PDFSulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary.
View Article and Find Full Text PDFAcclimation of photosynthetic capacity to elevated CO₂ involves a decrease of the leaf Rubisco content. In the present study, it was hypothesized that nitrogen uptake and partitioning within the leaf and among different aboveground organs affects the down-regulation of Rubisco. Given the interdependence of nitrogen and cytokinin signals at the whole plant level, it is also proposed that cytokinins affect the nitrogen economy of plants under elevated CO₂, and therefore the acclimatory responses.
View Article and Find Full Text PDFWheat plants (Triticum durum Desf., cv. Regallo) were grown in the field to study the effects of contrasting [CO(2)] conditions (700 versus 370 μmol mol(-1)) on growth, photosynthetic performance, and C management during the post-anthesis period.
View Article and Find Full Text PDFA study was conducted over 2 years to determine whether growth under elevated CO(2) (700 μmol mol(-1) ) and temperature (ambient + 4 °C) conditions modifies photochemical efficiency or only the use of electron transport products in spring wheat grown in field chambers. Elevated atmospheric CO(2) concentrations increased crop dry matter at maturity by 12-17%, while above-ambient temperatures did not significantly affect dry matter yield. In measurements with ambient CO(2) at ear emergence and after anthesis, growth at elevated CO(2) concentrations decreased flag leaf light-saturated carbon assimilation.
View Article and Find Full Text PDF